Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles.

نویسندگان

  • Yongliang Liu
  • Yud-Ren Chen
  • Xiangwu Nou
  • Kuanglin Chao
چکیده

Surface-enhanced Raman (SERS) spectra of various batches of bacteria adsorbed on silver colloidal nanoparticles were collected to explore the potential of the SERS technique for rapid and routine identification of E. coli and L. monocytogenes cultures. Relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of SERS peaks from small molecules (K(3)PO(4)) were used to evaluate the reproducibility, stability, and binding effectiveness of citrate-reduced silver colloids over batch and storage processes. The results suggested consistent reproducibility of silver colloids over batch process and also stability and consistent binding effectiveness over an eight-week storage period. A variety of mixtures of E. coli/L. monocytogenes cultures with different colloidal batches revealed that, despite large variations in relative intensities and positions of SERS active bands, characteristic and unique bands at 712 and 390 cm(-1) were consistently observed and were the strongest in E. coli and L. monocytogenes cultures, respectively. Two specific bands were used to develop simple algorithms in the evaluation of binding effectiveness of silver colloids over storage and further to identify E. coli and L. monocytogenes cultures with a 100% success. A single spectrum acquisition took 5 approximately 6 min, and a minimum of 25 microL silver colloid was directly mixed with 25 microL volume of incubated bacterial culture. The short acquisition time and small volume of incubated bacterial culture make silver colloidal nanoparticle based SERS spectroscopy ideal for potential use in the routine and rapid screening of E. coli and L. monocytogenes cultures on large scales. This is the first report of the development of simple and universal algorithms for bacterial identification from the respective exclusive SERS peaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Feasibility of colloidal silver SERS for rapid bacterial screening

This study reports the feasibility of citratereduced colloidal silver surface-enhanced Raman scattering (SERS) for differentiating three important food borne pathogens, E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloidK3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids fabricated in a batch-pr...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef.

Consumption of food contaminated with Escherichia coli O157:H7 is one of the major concerns in ensuring food safety. Techniques that are simple and suitable for fast screening to detect and identify pathogens in the food chain is vital to ensure food safety. In this work, we propose a simple and rapid technique to detect low levels of E. coli O157:H7 using membrane filtration and silver intensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied spectroscopy

دوره 61 8  شماره 

صفحات  -

تاریخ انتشار 2007