Vector and matrix apportionment problems and separable convex integer optimization
نویسندگان
چکیده
Algorithms for the proportional rounding of a nonnegative vector, and for the biproportional rounding of a nonnegative matrix are discussed. Here we view vector and matrix rounding as special instances of a generic optimization problem that employs an additive version of the objective function of Gaffke and Pukelsheim (2007). The generic problem turns out to be a separable convex integer optimization problem, in which the linear equality constraints are given by a totally unimodular coefficient matrix. So, despite the integer restrictions of the variables, Fenchel duality applies. Our chief goal is to study the implied algorithmic consequences. We establish a general algorithm based on the primal optimization problem. Furthermore we show that the biproportional algorithm of Balinski and Demange (1989), when suitably generalized, derives from the dual optimization problem. Finally we comment on the shortcomings of the alternating scaling algorithm, a discrete variant of the well-known Iterative Proportional Fitting procedure. Short title: Apportionment and separable integer optimization.
منابع مشابه
Graver basis and proximity techniques for block-structured separable convex integer minimization problems
We consider N-fold 4-block decomposable integer programs, which simultaneously generalize N-fold integer programs and two-stage stochastic integer programs with N scenarios. In previous work [R. Hemmecke, M. Köppe, R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Computer Science, vol. 6080, Springer, 2...
متن کاملSeparable convex optimization with nested lower and upper constraints
We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which use...
متن کاملDivisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems
When the seats in a parliamentary body are to be allocated proportionally to some given weights, such as vote counts or population data, divisor methods form a prime class to carry out the apportionment. We present a new characterization of divisor methods, via primal and dual optimization problems. The primal goal function is a cumulative product of the discontinuity points of the rounding rul...
متن کاملSeparable programming problems with the max-product fuzzy relation equation constraints
In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...
متن کاملA Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems
We study a generic minimization problem with separable non-convex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Meth. of OR
دوره 67 شماره
صفحات -
تاریخ انتشار 2008