Nitric-oxide-mediated zinc release contributes to hypoxic regulation of pulmonary vascular tone.

نویسندگان

  • Paula J Bernal
  • Karanee Leelavanichkul
  • Eileen Bauer
  • Rong Cao
  • Annette Wilson
  • Karla J Wasserloos
  • Simon C Watkins
  • Bruce R Pitt
  • Claudette M St Croix
چکیده

The metal binding protein metallothionein (MT) is a target for nitric oxide (NO), causing release of bound zinc that affects myogenic reflex in systemic resistance vessels. Here, we investigate a role for NO-induced zinc release in pulmonary vasoregulation. We show that acute hypoxia causes reversible constriction of intraacinar arteries (<50 microm/L) in isolated perfused mouse lung (IPL). We further demonstrate that isolated pulmonary (but not aortic) endothelial cells constrict in hypoxia. Hypoxia also causes NO-dependent increases in labile zinc in mouse lung endothelial cells and endothelium of IPL. The latter observation is dependent on MT because it is not apparent in IPL of MT(-/-) mice. Data from NO-sensitive fluorescence resonance energy transfer-based reporters support hypoxia-induced NO production in pulmonary endothelium. Furthermore, hypoxic constriction is blunted in IPL of MT(-/-) mice and in wild-type mice, or rats, treated with the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN), suggesting a role for chelatable zinc in modulating HPV. Finally, the NO donor DETAnonoate causes further vasoconstriction in hypoxic IPL in which NO vasodilatory pathways are inhibited. Collectively, these data suggest that zinc thiolate signaling is a component of the effects of acute hypoxia-mediated NO biosynthesis and that this pathway may contribute to constriction in the pulmonary vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Endothelial modulation of pulmonary vascular tone.

Pulmonary endothelial cells normally synthesize prostacyclin (PGI2) and nitric oxide (NO), which are both potent vasodilators. Although PGI2 is largely used to treat patients with severe pulmonary hypertension, its role in the physiology and pathophysiology of the pulmonary circulation is still debated. NO, which is now considered as the endogenous nitrovasodilator, is perhaps more involved tha...

متن کامل

Bicarbonate-dependent superoxide release and pulmonary artery tone.

Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (A...

متن کامل

Bronchial epithelium-associated pulmonary arterial muscle relaxation in the rat is absent in the fetus and suppressed by postnatal hypoxia.

We recently reported the existence of a bronchial epithelium-derived relaxing factor (BrEpRF) capable of reducing pulmonary arterial smooth muscle force generation in the newborn rat. We reasoned in this study that BrEpRF has physiological significance in the control of pulmonary vascular tone. We hypothesized that the release and/or activity of this factor can be stimulated and is suppressed p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 102 12  شماره 

صفحات  -

تاریخ انتشار 2008