Peak-Piloted Deep Network for Facial Expression Recognition
نویسندگان
چکیده
Objective functions for training of deep networks for face-related recognition tasks, such as facial expression recognition (FER), usually consider each sample independently. In this work, we present a novel peak-piloted deep network (PPDN) that uses a sample with peak expression (easy sample) to supervise the intermediate feature responses for a sample of non-peak expression (hard sample) of the same type and from the same subject. The expression evolving process from non-peak expression to peak expression can thus be implicitly embedded in the network to achieve the invariance to expression intensities. A specialpurpose back-propagation procedure, peak gradient suppression (PGS), is proposed for network training. It drives the intermediate-layer feature responses of non-peak expression samples towards those of the corresponding peak expression samples, while avoiding the inverse. This avoids degrading the recognition capability for samples of peak expression due to interference from their non-peak expression counterparts. Extensive comparisons on two popular FER datasets, Oulu-CASIA and CK+, demonstrate the superiority of the PPDN over state-ofthe-art FER methods, as well as the advantages of both the network structure and the optimization strategy. Moreover, it is shown that PPDN is a general architecture, extensible to other tasks by proper definition of peak and non-peak samples. This is validated by experiments that show state-of-the-art performance on pose-invariant face recognition, using the Multi-PIE dataset.
منابع مشابه
بهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFacial Expression Recognition in Older Adults using Deep Machine Learning
Facial Expression Recognition is still one of the challenging fields in pattern recognition and machine learning science. Despite efforts made in developing various methods for this topic, existing approaches lack generalizability and almost all studies focus on more traditional hand-crafted features extraction to characterize facial expressions. Moreover, effective classifiers to model the spa...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016