Bacterial DNA uptake sequences can accumulate by molecular drive alone.

نویسندگان

  • H Maughan
  • L A Wilson
  • R J Redfield
چکیده

Uptake signal sequences are DNA motifs that promote DNA uptake by competent bacteria in the family Pasteurellaceae and the genus Neisseria. The genomes of these bacteria contain many copies of their canonical uptake sequence (often >100-fold overrepresentation), so the bias of the uptake machinery causes cells to prefer DNA derived from close relatives over DNA from other sources. However, the molecular and evolutionary forces responsible for the abundance of uptake sequences in these genomes are not well understood, and their presence is not easily explained by any of the current models of the evolution of competence. Here we describe use of a computer simulation model to thoroughly evaluate the simplest explanation for uptake sequences, that they accumulate in genomes by a form of molecular drive generated by biased DNA uptake and evolutionarily neutral (i.e., unselected) recombination. In parallel we used an unbiased search algorithm to characterize genomic uptake sequences and DNA uptake assays to refine the Haemophilus influenzae uptake specificity. These analyses showed that biased uptake and neutral recombination are sufficient to drive uptake sequences to high densities, with the spacings, stabilities, and strong consensus typical of uptake sequences in real genomes. This result greatly simplifies testing of hypotheses about the benefits of DNA uptake, because it explains how genomes could have passively accumulated sequences matching the bias of their uptake machineries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Dynamics of Short Oligonucleotides: The Example of Bacterial DNA Uptake Enhancing Sequences

Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES) causes preferential uptake of conspecific DNA, but the function(s) be...

متن کامل

Coevolution of DNA Uptake Sequences and Bacterial Proteomes

Dramatic examples of repeated sequences occur in the genomes of some naturally competent bacteria, which contain hundreds or thousands of copies of short motifs called DNA uptake signal sequences. Here, we analyze the evolutionary interactions between coding-region uptake sequences and the proteomes of Haemophilus influenzae, Actinobacillus pleuropneumoniae, and Neisseria meningitidis. In all t...

متن کامل

Techniques for augmentation of exogenous DNA uptake by ovine spermatozoa

Sperm mediated gene transfer can be an inexpensive and simple method in animal transgenesis; however its efficiency is poor, mainly due to the spermatozoa’s lesser uptake of exogenous DNA. In the present study, the effects of lipofection and other augmentation techniques, such as sperm freezing and spermatozoa treatment with triton X100 and DMSO, on exogenous DNA uptake by sheep spermatozoa and...

متن کامل

Short-sequence DNA repeats in prokaryotic genomes.

Short-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneous. SSRs are encountered in many different branches of the prokaryote kingdom. They are found in genes encoding products as diverse as micr...

متن کامل

Molecular identification and capsular typing of Pasteurella multocida isolates from sheep pneumonia in Iran

Pasteurella multocida is known as one of the main organisms causing pneumonia in sheep. As immunity in pasteurellosis is serogroup specific, identification of prevalent capsular group among endemic areas is essential. The aim of this study was to molecular identification and determine of the capsular type of the P. multocida strains isolated from sheep pneumonia in Iran. Bacteriological and bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 186 2  شماره 

صفحات  -

تاریخ انتشار 2010