Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity
نویسندگان
چکیده
RNase P, the essential activity that performs the 5' maturation of tRNA precursors, can be achieved either by ribonucleoproteins containing a ribozyme present in the three domains of life or by protein-only enzymes called protein-only RNase P (PRORP) that occur in eukaryote nuclei and organelles. A fast growing list of studies has investigated three-dimensional structures and mode of action of PRORP proteins. Results suggest that similar to ribozymes, PRORP proteins have two main domains. A clear functional analogy can be drawn between the specificity domain of the RNase P ribozyme and PRORP pentatricopeptide repeat domain, and between the ribozyme catalytic domain and PRORP N4BP1, YacP-like Nuclease domain. Moreover, both types of enzymes appear to dock with the acceptor arm of tRNA precursors and make specific contacts with the corner of pre-tRNAs. While some clear differences can still be delineated between PRORP and ribonucleoprotein (RNP) RNase P, the two types of enzymes seem to use, fundamentally, the same catalytic mechanism involving two metal ions. The occurrence of PRORP and RNP RNase P represents a remarkable example of convergent evolution. It might be the unique witness of an ongoing replacement of catalytic RNAs by proteins for enzymatic activities.
منابع مشابه
Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P
RNase P is the enzyme that removes 5' extensions from tRNA precursors. With its diversity of enzyme forms-either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins-the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site se...
متن کاملEffects of Ultrasonic and High-Pressure Homogenization Pretreatment on the Enzymatic Hydrolysis and Antioxidant Activity of Yeast Protein Hydrolysate
Protein hydrolysate is highly regarded as a source of naturally occurring antioxidant peptides. The purpose of this study was to investigate the effect of Ultrasonic (Frequency, 20 KHz; Amplitude, 50%; Time, 30 min) and high-pressure homogenization (Power, 1500 bar; Rated flow, 10 dm/h) pretreatmenton the enzymatic hydrolysis and antioxidant properties of yeast protein hydrolysate obtained from...
متن کاملMolecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme.
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit...
متن کاملMitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing.
Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among ma...
متن کاملExpression, purification, crystallization and preliminary diffraction analysis of RNase P protein from Thermotoga maritima.
Ribonuclease P (RNase P), the ubiquitous endonuclease that catalyzes maturation of the 5'-end of tRNA in bacteria, is a ribonucleoprotein particle composed of one large RNA and one small protein. Two major structural types of bacterial RNase P RNA have been identified by phylogenetic comparative analysis: the A (ancestral) and B (Bacillus) types. The RNase P protein from Thermotoga maritima, a ...
متن کامل