Inverse Fuzzy-Process-Model Based Direct Adaptive Control

نویسندگان

  • János Abonyi
  • Hans Andersen
  • Lajos Nagy
  • Ferenc Szeifert
چکیده

This paper proposes a direct adaptive fuzzy-model-based control algorithm. The controller is based on an inverse semi-linguistic fuzzy process model, identified and adapted via inputmatching technique. For the adaptation of the fuzzy model a general learning rule has been developed employing gradient-descent algorithm. The on-line learning ability of the fuzzy model allows the controller to be used in applications, where the knowledge to control the process does not exist or the process is subject to changes in its dynamic characteristics. To demonstrate the applicability of the method, a realistic simulation experiments were performed for a non-linear liquid level process. The proposed direct adaptive fuzzy logic controller is shown to be capable of handling non-linear and time-varying systems dynamics, providing good overall system performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy

This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...

متن کامل

IEEE International Conference on Fuzzy Systems, San Antonio,

Inverse fuzzy process model based direct adaptive control. [2] J. Abonyi and R. Babuška. Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models. In Proceed-[3] J. Abonyi and R. Babuška. Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models. In Proceed-tification and control of nonlinear systems using fuzzy Hammerst...

متن کامل

Controlling structures by inverse adaptive neuro fuzzy inference system and MR dampers

To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...

متن کامل

LOCAL LINEAR MODEL TREE AND NEURO- FUZZY SYSTEM FOR MODELLING AND CONTROL OF AN EXPERIMENTAL pH NEUTRALIZATION PROCESS

This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT) and an adaptive neuro–fuzzy inference system (ANFIS). The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structur...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999