Meteorites formed in two reservoirs.
نویسنده
چکیده
منابع مشابه
Age of Jupiter inferred from the distinct genetics and formation times of meteorites.
The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion o...
متن کاملCarbon reservoirs on Mars: Constraints from Martian meteorites
Introduction: The search for life on Mars is a subject of enormous scientific and public interest; it is anticipated that remote missions to Mars over the coming few years will garner the requisite data that will allow the presence, or otherwise, of martian biological carbon to be determined. The only previous attempt to detect the presence of life in martian soil, made by instruments on the Vi...
متن کاملCombining meteorites and missions to explore Mars.
Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions hav...
متن کاملPetrology and geochemistry of whole rock of Shahdad meteorites
In this study, meteorite pieces, with total weight of 259 grams, have been studied which is not listed in the world bulletin of meteorites. In order to classify these samples, after preparing microscopic thin sections and performing accurate petrography, using geochemical data of the major elements and trace elements of whole rock, obtained from XRF and ICPMS methods in Zarazma company’s labora...
متن کاملRapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites.
Small differences in the ratio of neodymium-142 to neodymium-144 in early formed mantle reservoirs in planetary bodies are the result of in situ decay of the extinct radionuclide samarium-146 and can be used to constrain early planetary differentiation and therefore the time scale of planetary accretion. The martian meteorite Nakhla (approximately 1.3 billion years old), the type sample of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 357 6347 شماره
صفحات -
تاریخ انتشار 2017