Floral Dissimilarity and the Influence of Climate in the Pliocene High Arctic: Biotic and Abiotic Influences on Five Sites on the Canadian Arctic Archipelago
نویسندگان
چکیده
Retrieved from 49th Fall Meeting of the American Geophysical Union Abstracts (San Francisco, CA).Fricke, H. C., and Wing, S. L. (2004). Oxygen isotope and paleobotanicalestimates of temperature and δ18O–latitude gradients over North Americaduring the early Eocene. Am. J. Sci. 304, 612–635. doi: 10.2475/ajs.304.7.612Fyles, J. G. (1990). Beaufort formation (late tertiary) as seen from Prince Patrickisland, Arctic Canada. Arctic 43, 393–403. doi: 10.14430/arctic1632Fyles, J. G., Hills, L. V., Matthews, J. V., Barendregt, R., Baker, J., Irving,E., et al. (1994). Ballast brook and beaufort formations (late Tertiary)s (San Francisco, CA).Fricke, H. C., and Wing, S. L. (2004). Oxygen isotope and paleobotanicalestimates of temperature and δ18O–latitude gradients over North Americaduring the early Eocene. Am. J. Sci. 304, 612–635. doi: 10.2475/ajs.304.7.612Fyles, J. G. (1990). Beaufort formation (late tertiary) as seen from Prince Patrickisland, Arctic Canada. Arctic 43, 393–403. doi: 10.14430/arctic1632Fyles, J. G., Hills, L. V., Matthews, J. V., Barendregt, R., Baker, J., Irving,E., et al. (1994). Ballast brook and beaufort formations (late Tertiary) on Northern banks island, Arctic Canada. Quat. Int. 22, 141–171.doi: 10.1016/1040-6182(94)90010-8Fyles, J. G., Marincovich, L. Jr., Matthews, J. V. Jr., and Barendregt, R. (1991).Unique mollusc find in the beaufort formation (Pliocene) on Meighen Island,Arctic Canada. Geol. Surv. Can. Curr. Res. B 91, 105–112. doi: 10.4095/ 132552Givnish, T. J. (2002). Adaptive significance of evergreen vs. deciduous leaves:solving the triple paradox. Silva Fenn. 36, 703–743. doi: 10.14214/sf.535Gladenkov, A. Y., Oleinik, A. E., Marincovich, L. Jr., and Barinov, K. B. (2002). Arefined age for the earliest opening of Bering strait. Palaeogeogr. Palaeoclimatol.Palaeoecol. 183, 321–328. doi: 10.1016/S0031-0182(02)00249-3Grace, J. (1988). 3. Plant response to wind. Agric. Ecosyst. Environ. 22, 71–88.doi: 10.1016/0167-8809(88)90008-4 Grace, J., Berininger, F., and Nagy, L. (2002). Impacts of climate change on the treeline. Ann. Bot. 90, 537–544. doi: 10.1093/aob/mcf222Greenwood, D. R. (1992). Taphonomic constraints on foliar physiognomicinterpretations of late Cretaceous and tertiary palaeoeclimates. Rev. Palaeobot. Palynol. 71, 149–190. doi: 10.1016/0034-6667(92)90161-9 Greenwood, D. R. (2005). Leaf margin analysis: taphonomic constraints. Palaios20, 498–505. doi: 10.2110/palo.2004.P04-58 Frontiers in Ecology and Evolution | www.frontiersin.org11March 2017 | Volume 5 | Article 19 Fletcher et al.Pliocene Arctic Climate and Flora Grimm, G. W., and Potts, A. J. (2016). Fallacies and fantasies: the theoreticalunderpinnings of the coexistence approach for palaeoclimate reconstruction. Clim. Past 12, 611–622. doi: 10.5194/cp-12-611-2016 Harbert, R. S., and Nixon, K. C. (2015). Climate reconstruction analysis usingcoexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation. Am. J. Bot. 102, 1277–1289. doi: 10.3732/ajb.1400500Haywood, A. M., Dowsett, H. J., and Dolan, A. M. (2016). Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7:10646. doi: 10.1038/ncomms10646Haywood, A. M., Dowsett, H. J., Otto-Bliesner, B., Chandler, M. A., Dolan, A. M., Hill, D. J., et al. (2010). Pliocene Model Intercomparison Project (PlioMIP):experimental design and boundary conditions (Experiment 1). Geosci. Model Dev. 3, 227–242. doi: 10.5194/gmd-3-227-2010 Haywood, A. M., Hill, D. J., Dolan, A. M., Otto-Bliesner, B. L., Bragg, F.,Chan, W. L., et al. (2013). Large-scale features of Pliocene climate: results from the Pliocene model intercomparison project. Clim. Past 9, 191–209. doi: 10.5194/cp-9-191-2013Hernández Fernández, M. (2006). Rodent paleofaunas as indicators of climatic change in Europe during the last 125,000 years. Quat. Res. 65, 308–323.doi: 10.1016/j.yqres.2005.08.022 Hernández Fernández, M., Sierra, M. Á. Á., and Peláez-Campomanes, P. (2007). Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes inSouthwestern Europe during the Plio-Pleistocene. Palaeogeogr. Palaeoclimatol.Palaeoecol. 251, 500–526. doi: 10.1016/j.palaeo.2007.04.015Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P.G., and Jarvis, A. (2005).Very high resolution interpolated climate surfaces for global land areas. Int.J. Climatol. 25, 1965–1978. doi: 10.1002/joc.1276Hill, D. J., Haywood, A. M., Lunt, D. J., Hunter, S. J., Bragg, F. J., Contoux, C., et al. (2014). Evaluating the dominant components of warming in Pliocene climatesimulations. Clim. Past 10, 79–90. doi: 10.5194/cp-10-79-2014Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J. C., Joos, F., Masson-Delmotte,V., et al. (2007). “Palaeoclimate,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds S. S. D. Qin, M. Manning, Z.Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Cambridge, UK;New York, NY: Cambridge University Press).Jordan, G. J. (2011). A critical framework for the assessment of biologicalpalaeoproxies: predicting past climate and levels of atmospheric CO2 fromfossil leaves. New Phytol. 192, 29–44. doi: 10.1111/j.1469-8137.2011.03829.xKaufman, D., Farmer, G., Miller, G., Carter, L., and Brigham-Grette, J. (1990).“Strontium isotope dating of Upper Cenozoic marine deposits, NorthwesternAlaska,” in Annual Convention and Exposition of the American Association ofPetroleum Geologists (San Francisco, CA), CONF-900605.Keller, W. (2007). Implications of climate warming for Boreal shield lakes: a review and synthesis. Environ. Rev. 15, 99–112. doi: 10.1139/A07-002Körner, C., and Paulsen, J. (2004). A world-wide study of high altitude treelinetemperatures. J. Biogeogr. 31, 713–732. doi: 10.1111/j.1365-2699.2003.01043.xKowalski, E. A., and Dilcher, D. L. (2003). Warmer paleotemperaturesfor terrestrial ecosystems. Proc. Natl. Acad. Sci. U.S.A. 100, 167–170. doi: 10.1073/pnas.232693599Kuc, M. (1974). Fossil flora of the beaufort formation, Meighen Island, Northwestterritories. Geol. Sur. Can. 74-1A, 193–195. doi: 10.4095/103243Li, S.-F., Jacques, F. M. B., Spicer, R. A., Su, T., Spicer, T. E. V., Yang, J.,et al. (2016). Artificial neural networks reveal a high-resolution climaticsignal in leaf physiognomy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 442, 1–11.doi: 10.1016/j.palaeo.2015.11.005Marincovich, L. (2000). Central American paleogeography controlled Pliocene Arctic Ocean molluscan migrations. Geology 28, 551–554.doi: 10.1130/0091-7613(2000)28<551:CAPCPA>2.0.CO;2Marincovich, L., and Gladenkov, A. Y. (2001). New evidence for the age of BeringStrait. Quat. Sci. Rev. 20, 329–335. doi: 10.1016/S0277-3791(00)00113-XMatthews, J. V. Jr. (1987). Plant Macrofossils from the Neogene Beaufort Formation on Banks and Meighen Islands, District of Franklin. Geological Survey ofCanada, Paper 87-1A, 73–87.Matthews, J. V., Jr., and Fyles, J. G. (2000). “Late tertiary plant and arthropodfossils from the high-terrace sediments on Fosheim Peninsula, Ellesmere Island,Nunavut,” in Environmental Response to Climate Change in the Canadian HighArctic, Vol. 259, eds M. Garneau and B. T. Alt (Geological Survey of Canada),295–317. doi: 10.4095/211969 Matthews, J. V., Westgate, J., Ovenden, L., Carter, L. D., and Fouch, T. (2003). Stratigraphy, fossils, and age of sediments at the upper pit of the lost chickengold mine: new information on the late Pliocene environment of east central Alaska. Quat. Res. 60, 9–18. doi: 10.1016/S0033-5894(03)00087-5Matthews, J. V. Jr., and Ovenden, L. E. (1990). Late tertiary plant macrofossils from localities in Arctic/Subarctic North America: a review of the data. Arctic 43, 364–392.McBean, G., Alekseev, G., Deliang Chen, E. F., Fyfe, J., Groisman, P. Y., King, R., et al. (2005). “Arctic climate: past and present,” in Arctic Climate ImpactAssessment, eds C. Symon, L. Arris, and B. Heal (New York, NY: Cambridge University Press), 1020. McNeil, D. H. (1990). Tertiary marine events of the beaufort-mackenzie basin andcorrelation of oligocene to Pliocene marine outcrops in Arctic North America. Arctic 43, 301–313. doi: 10.14430/arctic1626 Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich,V., DeConto, R. M., et al. (2012). 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320.doi: 10.1126/science.1222135 Milla, R., and Reich, P. B. (2011). Multi-trait interactions, not phylogeny, finetune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465.doi: 10.1093/aob/mcq261Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L.,Serreze, M. C., et al. (2010). Arctic amplification: can the past constrainthe future? Quat. Sci. Rev. 29, 1779–1790. doi: 10.1016/j.quascirev.2010.02.008Mitchell, W. T., Rybczynski, N., Schröder-Adams, C., Hamilton, P. B., Smith, R., and Douglas, M. (2016). Stratigraphic and Paleoenvironmental reconstructionof a Mid-Pliocene fossil site in the high Arctic (Ellesmere Island, Nunavut):evidence of an ancient Peatland with beaver activity. Arctic 69, 185–204.doi: 10.14430/arctic4567Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy, M.,Tindall, M. L., et al. (2014). Which is a better predictor of plant traits:temperature or precipitation? J. Veg. Sci. 25, 1167–1180. doi: 10.1111/jvs.12190Mosbrugger, V., and Utescher, T. (1997). The coexistence approach – amethod for quantitative reconstructions of Tertiary terrestrial palaeoclimatedata using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 61–86.doi: 10.1016/S0031-0182(96)00154-XMurphy, J. (2006). “Woody debris lenses: paleoenvironmental archives,”inAbstractRetrieved from Keck Symposium (Amherst, MA), 9, 20–25.Murphy, J., Williams, C., and Sunderlin, D. (2007). “Woody debris lenses aspaleoenvironmental archives” in Abstract Retrieved from Geological Society of America Abstracts with Programs (Denver, CO), 632.Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara,R., et al. (2015). Vegan: Community Ecology Package. R package version 2.4–1 ed. Available online at: https://CRAN.R-project.org/package=veganPagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C. (2010). High earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations.Nat. Geosci. 3, 27–30. doi: 10.1038/ngeo724Paulsen, J., and Körner, C. (2014). A climate-based model to predictpotential treeline position around the globe. Alp. Bot. 124, 1–12.doi: 10.1007/s00035-014-0124-0Ramírez, D. A., Foster, D. A., Min, K., Montes, C., Cardona, A., and Sadove, G.(2016). Exhumation of the Panama basement complex and basins: implicationsfor the closure of the central American seaway. Geochem. Geophys. Geosyst. 17, 1758–1777. doi: 10.1002/2016GC006289Raup, D. M., and Crick, R. E. (1979). Measurement of faunal similarity inpaleontology. J. Paleontol. 53, 1213–1227.R Core Team (2013). R: A Language and Environment for Statistical Computing.Vienna: R Foundation for Statistical Computing. Revelle, W. (2016). psych: Procedures for Personality and Psychological Research,Version = 1.6.9. Evanston, IL: Northwestern University. Available online at:https://CRAN.R-project.org/package=psychRybczynski, N., Gosse, J. C., Harington, C. R., Wogelius, R. A., Hidy, A.J., and Buckley, M. (2013). Mid-Pliocene warm-period deposits in the Frontiers in Ecology and Evolution | www.frontiersin.org12March 2017 | Volume 5 | Article 19 Fletcher et al.Pliocene Arctic Climate and Flora High Arctic yield insight into camel evolution. Nat. Commun. 4, 1–9.doi: 10.1038/ncomms2516 Salzmann, U., Dolan, A. M., Haywood, A. M., Chan, W.-L., Voss, J., Hill, D. J., et al. (2013). Challenges in quantifying Pliocene terrestrial warmingrevealed by data-model discord. Nat. Clim. Change 3, 969–974. doi: 10.1038/ nclimate2008Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J., and Hill, D. J. (2008). A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob. Ecol. Biogeogr. 17, 432–447.doi: 10.1111/j.1466-8238.2008.00381.x Scherrer, D., and Körner, C. (2011). Topographically controlled thermal-habitatdifferentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416. doi: 10.1111/j.1365-2699.2010.02407.x Scott, P. A., Lavoie, C., MacDonald, G. M., Sveinbjörnsson, B., and Wein, R. W.(1997). “Change and future position of arctic tree line,” in Global Change and Arctic Terrestrial Ecosystems, eds W. C. Oechel, T. Callaghan, T. Gilmanov, J. I. Holten, B. Maxwell, U. Molau, B. Sveinbjörnsson (New York, NY: Springer),245–265. Snucins, E., and Gunn, J. (2000). Interannual variation in the thermalstructure of clear and colored lakes. Limnol. Oceanogr. 45, 1639–1646. doi: 10.4319/lo.2000.45.7.1639 Spicer, R. A., Bera, S., De Bera, S., Spicer, T. E. V., Srivastava, G., Mehrotra, R., et al.(2011). Why do foliar physiognomic climate estimates sometimes differ fromthose observed? Insights from taphonomic information loss and a CLAMPcase study from the Ganges delta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302,381–395. doi: 10.1016/j.palaeo.2011.01.024Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., Lourens, L. J., and vande Wal, R. S. (2016). CO2 over the past 5 million years: continuous simulation and new δ11B-based proxy data. Earth Planet. Sci. Lett. 439, 1–10.doi: 10.1016/j.epsl.2016.01.022Sugimoto, A., Yanagisawa, N., Naito, D., Fujita, N., and Maximov, T. C. (2002).Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol. Res. 17, 493–503. doi: 10.1046/j.1440-1703.2002.00506.x Tedford, R. H., and Harington, C. R. (2003). An Arctic mammal faunafrom the early Pliocene of North America. Nature 425, 388–390. doi: 10.1038/nature01892Therneau, T., Atkinson, B. and Ripley, B. (2015). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-10. Available online at: https://CRAN.R-project.org/package=rpartVerhoeven, K., Louwye, S., Eiríksson, J., and De Schepper, S. (2011). A new age model for the Pliocene–Pleistocene Tjörnes section on Iceland: its implicationfor the timing of North Atlantic–Pacific palaeoceanographic pathways. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 33–52. doi: 10.1016/j.palaeo.2011.
منابع مشابه
The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran
The main objective of this study was to reveal the impact of nine climate indices on temperature changes and climate oscillations in Golestan Province along the southern coast of the Caspian Sea. Climate indices data from across the Atlantic-Eurasian sector were collected from the NCEP/NCAR, the Climate Prediction Centre (CPC) and the Climatic Research Unit (CRU) over a period of 40 years (1971...
متن کاملThe influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran
The main objective of this study was to reveal the impact of nine climate indices on temperature changes and climate oscillations in Golestan Province along the southern coast of the Caspian Sea. Climate indices data from across the Atlantic-Eurasian sector were collected from the NCEP/NCAR, the Climate Prediction Centre (CPC) and the Climatic Research Unit (CRU) over a period of 40 years (1971...
متن کاملInfluence of North Pacific decadal variability on the western Canadian Arctic over the past 700 years
Understanding how internal climate variability influences arctic regions is required to better forecast future global climate variations. This paper investigates an annually-laminated (varved) record from the western Canadian Arctic and finds that the varves are negatively correlated with both the instrumental Pacific Decadal Oscillation (PDO) during the past century and also with reconstructed...
متن کاملPliocene Arctic temperature constraints from the growth rings and isotopic composition of fossil larch
Instrumental records reveal that the current rate of Arctic warming greatly exceeds mean global warming. However, Arctic temperatures during the Pliocene were considerably warmer than present, making it an excellent time period for investigating potential consequences of current warming trends. Here we focus on an early Pliocene (4 to 5 Ma) peat deposit from Ellesmere Island, characterized by a...
متن کاملClimate extremes are associated with invertebrate taxonomic and functional composition in mountain lakes
Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abio...
متن کاملNew vascular plant records for the Canadian Arctic Archipelago
The Canadian Arctic Archipelago is a vast region of approximately 1,420,000 km(2), with a flora characterized by low species diversity, low endemicity, and little influence by alien species. New records of vascular plant species are documented here based on recent fieldwork on Victoria and Baffin Islands; additional records based on recent literature sources are mentioned. This paper serves as ...
متن کامل