An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases.

نویسندگان

  • Nicolette Meshkat
  • Marisa Eisenberg
  • Joseph J Distefano
چکیده

The parameter identifiability problem for dynamic system ODE models has been extensively studied. Nevertheless, except for linear ODE models, the question of establishing identifiable combinations of parameters when the model is unidentifiable has not received as much attention and the problem is not fully resolved for nonlinear ODEs. Identifiable combinations are useful, for example, for the reparameterization of an unidentifiable ODE model into an identifiable one. We extend an existing algorithm for finding globally identifiable parameters of nonlinear ODE models to generate the 'simplest' globally identifiable parameter combinations using Gröbner Bases. We also provide sufficient conditions for the method to work, demonstrate our algorithm and find associated identifiable reparameterizations for several linear and nonlinear unidentifiable biomodels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation

Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not wide...

متن کامل

Algebraic Tools for the Analysis of State Space Models

We present algebraic techniques to analyze state space models in the areas of structural identifiability, observability, and indistinguishability. While the emphasis is on surveying existing algebraic tools for studying ODE systems, we also present a variety of new results. In particular: On structural identifiability, we present a method using linear algebra to find identifiable functions of t...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Generalizing the differential algebra approach to input-output equations in structural identifiability

Structural identifiability for parameter estimation addresses the question of whether it is possible to uniquely recover the model parameters assuming noise-free data, making it a necessary condition for successful parameter estimation for real, noisy data. One established approach to this question for nonlinear ordinary differential equation models is via differential algebra, which uses chara...

متن کامل

Adaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm

This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 222 2  شماره 

صفحات  -

تاریخ انتشار 2009