Spectral Properties of Reducible Nonnegative and Eventually Nonnegative Matrices

ثبت نشده
چکیده

Let η = (η1, η2, . . . , ηt) and ν = (ν1, ν2, . . . , νt) be two sequences of nonnegative integers. (Append zeros if necessary to the end of the shorter sequence so that they are the same length.) We say that ν is majorized by η if ∑j l=1 νl ≤ ∑j l=1 ηl for all 1 ≤ j ≤ t and tl=1 νl = ∑t l=1 ηl. We write ν 1 η. Let Γ = (V,E) be a graph where V is a finite vertex set and E ⊆ V ×V is an edge set. A path from j to m is a sequence of vertices j = v1, v2, ..., vt = m with (vl, vl+1) ∈ E for l = 1, ..., t − 1. A simple path is a path where the vertices are pairwise distinct. The empty path will be considered to be a simple path linking every vertex to itself. The path v1, v2, ..., vt is a cycle if v1 = vt and v1, v2, . . . , vt−1 is a simple path.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eventual properties of matrices

An eventual property of a matrix M ∈ C is a property that holds for all powers M, k ≥ k0, for some positive integer k0. Eventually positive and eventually nonnegative matrices have been studied extensively, and some results are known for eventually r-cyclic matrices. This paper introduces and establishs properties of eventually reducible matrices, establishs properties of the eigenstructure of ...

متن کامل

Eventual Properties of Matrices ∗ Leslie Hogben

An eventual property of a matrix M ∈ C n×n is a property that holds for all powers M k , k ≥ k 0 , for some positive integer k 0. Eventually positive and eventually nonnegative matrices have been studied extensively, and some results are known for eventually r-cyclic matrices. In this paper we introduce and establish properties of eventually reducible matrices, establish properties of the eigen...

متن کامل

Ela Eventual Properties of Matrices

Abstract. An eventual property of a matrix M ∈ C is a property that holds for all powers M, k ≥ k0, for some positive integer k0. Eventually positive and eventually nonnegative matrices have been studied extensively, and some results are known for eventually r-cyclic matrices. This paper introduces and establishs properties of eventually reducible matrices, establishs properties of the eigenstr...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Ela M ∨ - Matrices : a Generalization of M - Matrices Based on Eventually Nonnegative Matrices

An M ∨-matrix has the form A = sI − B, where s ≥ ρ(B) ≥ 0 and B is eventually nonnegative; i.e., B k is entrywise nonnegative for all sufficiently large integers k. A theory of M ∨-matrices is developed here that parallels the theory of M-matrices, in particular as it regards exponential nonnegativity, spectral properties, semipositivity, monotonicity, inverse nonnegativity and diagonal dominance.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008