From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation†
نویسندگان
چکیده
Recent advances in contact mechanics have formalized approaches to distinguish between poroelastic and viscoelastic deformation regimes via load relaxation experiments, and to simultaneously extract the mechanical and transport properties of gels at the macroscale. As poroelastic relaxation times scale quadratically with contact diameter, contact radii and depths on the mm scale can require hours for a single load relaxation experiment to complete. For degradable materials such as biodegradable hydrogels and soft biological tissues, it is necessary to minimize the required experimental time. Here, we investigated the applicability of these methods at smaller (mm) length scales to shorten relaxation times. We conducted load relaxation experiments on hydrated polyacrylamide (PAAm) gels at the microscale via atomic force microscopy (AFM)-enabled indentation, as well as at the macroscale via instrumented indentation. We confirmed the approach as a reliable means to distinguish between viscoelastic and poroelastic relaxation regimes at the microscale: shear modulus G, drained Poisson’s ratio ns, diffusivity D, and intrinsic permeability k of the gels agreed well at the microand macroscale levels. Importantly, these properties were accessed accurately within seconds at the microscale, rather than within hours at the macroscale. Our results demonstrate the promise of contact-based load relaxation analysis toward rapid, robust characterization of mechanical and transport properties for poroelastic gels and tissues.
منابع مشابه
Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels.
Colloidal-probe spherical indentation load-relaxation experiments with a probe radius of 3 μm are conducted on poly(ethylene glycol) (PEG) hydrogel materials to quantify their steady-state mechanical properties and time-dependent transport properties via a single experiment. PEG-based hydrogels are shown to be heterogeneous in both morphology and mechanical stiffness at this scale; a linear-har...
متن کاملSpherical indentation testing of poroelastic relaxations in thin hydrogel layers
In this work, we present the Poroelastic Relaxation Indentation (PRI) testing approach for quantifying the mechanical and transport properties of thin layers of poly(ethylene glycol) hydrogels with thicknesses on the order of 200 mm. Specifically, PRI characterizes poroelastic relaxation in hydrogels by indenting the material at fixed depth and measuring the contact area-dependent load relaxati...
متن کاملFast Identification of Poroelastic Parameters from Indentation Tests
A novel approach is presented for the identification of constitutive parameters of linear poroelastic materials from indentation tests. Load-controlled spherical indentation with a ramp-hold creep profile is considered. The identification approach is based on the normalization of the time-displacement indentation response, in analogy to the well-known one-dimensional consolidation problem. The ...
متن کاملAntimicrobial Modified-Tragacanth Gum/Acrylic Acid Hydrogels for the Controlled Release of Quercetin
In this study, new antimicrobial hydrogels were prepared via reaction of functionalized-tragacanthgum (TG) biopolymer by quaternary ammonium functionalization of TG (QTG) with acrylic acid(AA). Characterization of the QTG hydrogels (QTG-AA) was carried out by FTIR,thermogravimetric analysis (TGA), and 1H NMR. Dynamic mechanical analysis, (DMA) wasconducted to characteriz...
متن کاملA novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.
Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels unde...
متن کامل