Counting unlabelled toroidal graphs with no K33-subdivisions
نویسندگان
چکیده
We provide a description of unlabelled enumeration techniques, with complete proofs, for graphs that can be canonically obtained by substituting 2-pole networks for the edges of core graphs. Using structure theorems for toroidal and projectiveplanar graphs containing no K3,3-subdivisions, we apply these techniques to obtain their unlabelled enumeration.
منابع مشابه
1 S ep 2 00 5 Counting unlabelled toroidal graphs with no K 3 , 3 - subdivisions Andrei Gagarin , Gilbert Labelle and Pierre Leroux
We provide a description of unlabelled enumeration techniques, with complete proofs, for graphs that can be canonically obtained by substituting 2-pole networks for the edges of core graphs. Using structure theorems for toroidal and projectiveplanar graphs containing no K3,3-subdivisions, we apply these techniques to obtain their unlabelled enumeration.
متن کاملThe structure of K3, 3-subdivision-free toroidal graphs
We describe the structure of 2-connected non-planar toroidal graphs with no K3,3-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K5-subdivision in [A. Gagarin and W. Kocay, “Embedding graphs containing K5-subdivisions”...
متن کاملForbidden minors and subdivisions for toroidal graphs with no K3, 3's
Forbidden minors and subdivisions for toroidal graphs are numerous. In contrast, the toroidal graphs with no K3,3’s have a nice explicit structure and short lists of obstructions. For these graphs, we provide the complete lists of four forbidden minors and eleven forbidden subdivisions.
متن کاملThe obstructions for toroidal graphs with no K3, 3's
We prove a precise characterization of toroidal graphs with no K3,3-subdivisions in terms of forbidden minors and subdivisions. The corresponding lists of four forbidden minors and eleven forbidden subdivisions are shown.
متن کاملMinimum Tenacity of Toroidal graphs
The tenacity of a graph G, T(G), is dened by T(G) = min{[|S|+τ(G-S)]/[ω(G-S)]}, where the minimum is taken over all vertex cutsets S of G. We dene τ(G - S) to be the number of the vertices in the largest component of the graph G - S, and ω(G - S) be the number of components of G - S.In this paper a lower bound for the tenacity T(G) of a graph with genus γ(G) is obtained using the graph's connec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/math/0509004 شماره
صفحات -
تاریخ انتشار 2005