`-oscillators from second-order invariant PDEs of the centrally extended conformal Galilei algebras

نویسندگان

  • N. Aizawa
  • Z. Kuznetsova
چکیده

We construct, for any given ` = 12 + N0, the second-order, linear PDEs which are invariant under the centrally extended Conformal Galilei Algebra. At the given `, two invariant equations in one time and ` + 12 space coordinates are obtained. The first equation possesses a continuum spectrum and generalizes the free Schrödinger equation (recovered for ` = 12) in 1 + 1 dimension. The second equation (the “`-oscillator”) possesses a discrete, positive spectrum. It generalizes the 1 + 1-dimensional harmonic oscillator (recovered for ` = 12). The spectrum of the `-oscillator, derived from a specific osp(1|2` + 1) h.w.r., is explicitly presented. The two sets of invariant PDEs are determined by imposing (representationdependent) on-shell invariant conditions both for degree 1 operators (those with continuum spectrum) and for degree 0 operators (those with discrete spectrum). The on-shell condition is better understood by enlarging the Conformal Galilei Algebras with the addition of certain second-order differential operators. Two compatible structures (the algebra/superalgebra duality) are defined for the enlarged set of operators. ∗The work has been accepted in Journal of Mathematical Physics. †E-mail: [email protected] ‡E-mail: [email protected] §E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs

We construct, for any given ` = 1 2 + N0, second-order nonlinear partial differential equations (PDEs) which are invariant under the transformations generated by the centrally extended conformal Galilei algebras. This is done for a particular realization of the algebras obtained by coset construction and we employ the standard Lie point symmetry technique for the construction of PDEs. It is obs...

متن کامل

Comments on Galilean conformal field theories and their geometric realization

We discuss non-relativistic conformal algebras generalizing the Schrödinger algebra. One instance of these algebras is a conformal, acceleration-extended, Galilei algebra, which arises also as a contraction of the relativistic conformal algebra. In two dimensions, this admits an “exotic” central extension, whereby boosts do not commute. We study general properties of non-relativistic conformal ...

متن کامل

Conformal Galilean-type algebras, massless particles and gravitation

After defining conformal Galilean-type algebras for arbitrary dynamical exponent z we consider the particular cases of the conformal Galilei algebra (CGA) and the Schrödinger Lie algebra (sch). Galilei massless particles moving with arbitrary, finite velocity are introduced i) in d = 2 as a realization of the centrally extended CGA in 6 dimensional phase space, ii) in arbitrary spatial dimensio...

متن کامل

Generalized Conformal and Superconformal Group Actions and Jordan Algebras

We study the “conformal groups” of Jordan algebras along the lines suggested by Kantor. They provide a natural generalization of the concept of conformal transformations that leave 2-angles invariant to spaces where “p-angles” (p ≥ 2) can be defined. We give an oscillator realization of the generalized conformal groups of Jordan algebras and Jordan triple systems. A complete list of the general...

متن کامل

`-conformal Galilei algebras

Inequivalent N = 2 supersymmetrizations of the `-conformal Galilei algebra in d-spatial dimensions are constructed from the chiral (2, 2) and the real (1, 2, 1) basic supermultiplets of the N = 2 supersymmetry. For non-negative integer and half-integer ` both superalgebras admit a consistent truncation with a (different) finite number of generators. The real N = 2 case coincides with the supera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015