A VLSI neuromorphic device for implementing spike-based neural networks

نویسندگان

  • Giacomo Indiveri
  • Elisabetta Chicca
چکیده

We present a neuromorphic VLSI device which comprises hybrid analog/digital circuits for implementing networks of spiking neurons. Each neuron integrates input currents from a row of multiple analog synaptic circuit. The synapses integrate incoming spikes, and produce output currents which have temporal dynamics analogous to those of biological post synaptic currents. The VLSI device can be used to implement real-time models of cortical networks, as well as real-time learning and classification tasks. We describe the chip architecture and the analog circuits used to implement the neurons and synapses. We describe the functionality of these circuits and present experimental results demonstrating the network level functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic Plasticity and Spike-based Computation in VLSI Networks of Integrate-and-Fire Neurons

Neuromorphic circuits are being used to develop a new generation of computing technologies based on the organizing principles of the biological nervous system. Within this context, we present neuromorphic circuits for implementing massively parallel VLSI networks of integrate-and-fire neurons with adaptation and spike-based plasticity mechanisms. We describe both analog continuous time and digi...

متن کامل

A neuromorphic VLSI device for implementing 2D selective attention systems

Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems...

متن کامل

A neuromorphic VLSI design for spike timing and rate based synaptic plasticity

Triplet-based Spike Timing Dependent Plasticity (TSTDP) is a powerful synaptic plasticity rule that acts beyond conventional pair-based STDP (PSTDP). Here, the TSTDP is capable of reproducing the outcomes from a variety of biological experiments, while the PSTDP rule fails to reproduce them. Additionally, it has been shown that the behaviour inherent to the spike rate-based Bienenstock-Cooper-M...

متن کامل

Spike Timing-Dependent Plasticity in the Address Domain

Address-event representation (AER), originally proposed as a means to communicate sparse neural events between neuromorphic chips, has proven efficient in implementing large-scale networks with arbitrary, configurable synaptic connectivity. In this work, we further extend the functionality of AER to implement arbitrary, configurable synaptic plasticity in the address domain. As proof of concept...

متن کامل

Implementation of neuromorphic systems: from discrete components to analog VLSI chips (testing and communication issues).

We review a series of implementations of electronic devices aiming at imitating to some extent structure and function of simple neural systems, with particular emphasis on communication issues. We first provide a short overview of general features of such "neuromorphic" devices and the implications of setting up "tests" for them. We then review the developments directly related to our work at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011