Gα(i2)-mediated protection from ischaemic injury is modulated by endogenous RGS proteins in the mouse heart.
نویسندگان
چکیده
AIMS Regulator of G protein signalling (RGS) proteins act as molecular 'off switches' that terminate G protein signalling by catalyzing the hydrolysis of Gα-bound GTP to GDP. Many different Gα(i)-coupled receptors have been implicated in the cardioprotective effects of ischaemic preconditioning. However, the role of RGS proteins in modulating cardioprotection has not been previously investigated. We used mice that were homozygous (GS/GS) or heterozygous (GS/+) for a mutation in Gα(i2) rendering it RGS-insensitive (G184S) to determine whether interactions between endogenous RGS proteins and Gα(i2) modulate Gα(i)-mediated protection from ischaemic injury. METHODS AND RESULTS Langendorff-perfused mouse hearts were subjected to 30 min global ischaemia and 2 h reperfusion. Infarcts in GS/GS (14.5% of area at risk) and GS/+ (22.6% of AAR) hearts were significantly smaller than those of +/+ hearts (37.2% of AAR) and recovery of contractile function was significantly enhanced in GS/GS and GS/+ hearts compared with +/+ hearts. The cardioprotective phenotype was not reversed by wortmannin or U0126 but was reversed by 5-hydroxydecanoic acid and HMR 1098, indicating that RGS-insensitive Gα(i2) protects the heart through a mechanism that requires functional ATP-dependent potassium channels but does not require acute activation of extracellular-regulated kinase or Akt signalling pathways. CONCLUSIONS This is the first study to demonstrate that Gα(i2)-mediated cardioprotection is suppressed by RGS proteins. These data suggest that RGS proteins may provide novel therapeutic targets to protect the heart from ischaemic injury.
منابع مشابه
RGS Proteins in Heart: Brakes on the Vagus
It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of G(i/o)-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resultin...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملEndogenous RGS proteins modulate SA and AV nodal functions in isolated heart: implications for sick sinus syndrome and AV block.
G protein-coupled receptors play a pivotal role in regulating cardiac automaticity. Their function is controlled by regulator of G protein signaling (RGS) proteins acting as GTPase-activating proteins for Galpha subunits to suppress Galpha(i) and Galpha(q) signaling. Using knock-in mice in which Galpha(i2)-RGS binding and negative regulation are disrupted by a genomic Galpha(i2)G184S (GS) point...
متن کاملRegulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.
Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: mem...
متن کاملGαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
BACKGROUND Two pertussis toxin sensitive G(i) proteins, G(i2) and G(i3), are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G(i) isoforms are functionally distinct. To test for isoform-specific functions of G(i) proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). METHOD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2011