A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans.

نویسندگان

  • D P Bockmühl
  • J F Ernst
چکیده

Efg1p in the human fungal pathogen Candida albicans is a member of the conserved APSES class of proteins regulating morphogenetic processes in fungi. We have analyzed the importance for hyphal morphogenesis of a putative phosphorylation site for protein kinase A (PKA), threonine-206, within an Efg1p domain highly conserved among APSES proteins. Alanine substitution of T206, but not of the adjacent T207 and T208 residues, led to a block of hypha formation on solid and in liquid media, while a T206E exchange caused hyperfilamentation. The extent of the morphogenetic defect caused by the T206A mutation depended on hypha-induction conditions. Extragenous suppression of mutations in signaling components, including tpk2 and cek1 mutations, was achieved by wild-type- and T206E-, but not by the T206A-variant-encoding allele of EFG1. All muteins tested were produced at equal levels and at high production levels supported pseudohyphal formation. The results are consistent with a role of Efg1p as a central downstream component of a PKA-signaling pathway including Tpk2p or other PKA isoforms. Threonine-206 of Efg1p is essential as a putative phosphorylation target to promote hyphal induction by a subset of environmental cues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.

Cell chain formation is a characteristic of filamentous growth in fungi. How it is regulated developmentally in multimorphic fungi is not known. In Candida albicans, degradation of septa during yeast growth is accomplished by enzymes encoded by Ace2 activated genes expressed in G(1). We found that phosphorylation of a conserved developmental regulator, Efg1, by the cyclin-dependent kinase Cdc28...

متن کامل

Down-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans

Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...

متن کامل

Hypoxia and Temperature Regulated Morphogenesis in Candida albicans

Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N...

متن کامل

Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.

We identified a gene of the fungal pathogen Candida albicans, designated EFG1, whose high-level expression stimulates pseudohyphal morphogenesis in the yeast Saccharomyces cerevisiae. In a central region the deduced Efg1 protein is highly homologous to the StuA and Phd1/Sok2 proteins that regulate morphogenesis of Aspergillus nidulans and S. cerevisiae, respectively. The core of the conserved r...

متن کامل

Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions

Transitions between yeast and hyphae are essential for Candida albicans pathogenesis. The genetic programs that regulate its hyphal development can be distinguished by embedded versus aerobic surface agar invasion. Hbr1, a regulator of white-opaque switching, is also a positive and negative regulator of hyphal invasion. During embedded growth at 24°C, an HBR1/hbr1 strain formed constitutively f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 157 4  شماره 

صفحات  -

تاریخ انتشار 2001