On the Factorization of Differential Modules
نویسندگان
چکیده
Differential modules are modules over rings of linear (partial) differential operators which are finite-dimensional vector spaces. We present a generalization of the Beke-Schlesinger algorithm that factors differential modules. The method requires solving only one set of associated equations for each degree d of a potential factor. Mathematics Subject Classification (2000). 13N05; 13N10; 13N15; 16S32; 16S36; 32C38; 33F10; 68W30.
منابع مشابه
Inert Module Extensions, Multiplicatively Closed Subsets Conserving Cyclic Submodules and Factorization in Modules
Introduction Suppose that is a commutative ring with identity, is a unitary -module and is a multiplicatively closed subset of . Factorization theory in commutative rings, which has a long history, still gets the attention of many researchers. Although at first, the focus of this theory was factorization properties of elements in integral domains, in the late nineties the theory was gener...
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کاملOn Solutions of Linear Functional Systems and Factorization of Laurent-Ore Modules
We summarize some recent results on partial linear functional systems. By associating a finite-dimensional linear functional system to a Laurent-Ore module, Picard-Vessiot extensions are generalized from linear ordinary differential (difference) equations to finite-dimensional linear functional systems. A generalized Beke’s method is also presented for factoring Laurent-Ore modules and it will ...
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کاملOn semi weak factorization structures
In this article the notions of semi weak orthogonality and semi weak factorization structure in a category $mathcal X$ are introduced. Then the relationship between semi weak factorization structures and quasi right (left) and weak factorization structures is given. The main result is a characterization of semi weak orthogonality, factorization of morphisms, and semi weak factorization structur...
متن کامل