Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow
نویسنده
چکیده
We consider the nite element approximation of a non-Newtonian ow, where the viscosity obeys a general law including the Carreau or power law. For suuciently regular solutions we prove energy type error bounds for the velocity and pressure. These bounds improve on existing results in the literature. A key step in the analysis is to prove abstract error bounds initially in a quasi-norm, which naturally arises in degenerate problems of this type.
منابع مشابه
Discontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems Ii: Strongly Monotone Quasi-newtonian Flows
In this article we develop both the a priori and a posteriori error analysis of hp– version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local ...
متن کاملQUASI-NORM TECHNIQUES FOR FINITE ELEMENT APPROXIMATION OF p-LAPLAICAN
The p-Laplacian problem is one of the typical examples of degenerate nonlinear systems arising from nonlinear diffusion and filtration, powerlaw materials and quasi-Newtonian flows. In this article we give a survey of quasi-norm techniques to establish optimal error estimates for finite element approximation of p-Laplacian.
متن کاملA posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm
A posteriori error estimators based on quasi-norm gradient recovery are established for the finite element approximation of the p-Laplacian on unstructured meshes. The new a posteriori error estimators provide both upper and lower bounds in the quasi-norm for the discretization error. The main tools for the proofs of reliability are approximation error estimates for a local approximation operat...
متن کاملComputable Error Bounds for Finite Element Approximation on Non-polygonal Domains
Fully computable, guaranteed bounds are obtained on the error in the finite element approximation which take the effect of the boundary approximation into account. We consider the case of piecewise affine approximation of the Poisson problem with pure Neumann boundary data, and obtain a fully computable quantity which is shown to provide a guaranteed upper bound on the energy norm of the error....
متن کاملSuperconvergent Approximation of Singularly Perturbed Problems
In this work, superconvergent approximation of singularly perturbed two-point boundary value problems of reaction-diiusion type and convection-diiusion type are studied. By applying the standard nite element method on the Shishkin mesh, superconvergent error bounds of (N ?1 ln(N +1)) p+1 in a discrete energy norm are established. The error bounds are uniformly valid with respect to the singular...
متن کامل