Detection Limits for Linear Non-Gaussian State-Space Models

نویسندگان

  • Gustaf Hendeby
  • Fredrik Gustafsson
چکیده

The performance of nonlinear fault detection schemes is hard to decide objectively, so Monte Carlo simulations are often used to get a subjective measure and relative performance for comparing different algorithms. There is a strong need for a constructive way of computing an analytical performance bound, similar to the Cramér-Rao lower bound for estimation. This paper provides such a result for linear non-Gaussian systems. It is first shown how a batch of data from a linear statespace model with additive faults and non-Gaussian noise can be transformed to a residual described by a general linear non-Gaussian model. This also involves a parametric description of incipient faults. The generalized likelihood ratio test is then used as the asymptotic performance bound. The test statistic itself may be impossible to compute without resorting to numerical algorithms, but the detection performance scales analytically with a constant that depends only on the distribution of the noise. It is described how to compute this constant, and a simulation study illustrates the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Markov Random Field Extensions using State Space Models

We elaborate on the link between state space models and (Gaussian) Markov random fields. We extend the Markov random field models by generalising the corresponding state space model. It turns out that several non Gaussian spatial models can be analysed by combining approximate Kalman filter techniques with importance sampling. We illustrate the ideas by formulating a model for edge detection in...

متن کامل

Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...

متن کامل

Disturbed Fault Detection and Isolation Problems for Linear State Models in a Noisy Environment

In this paper we afford the fault detection and isolation problem in the context of linear discrete-time state-space models whose state equation is affected both by faults and by disturbances. Model as well as measurement errors, described as zero-mean white gaussian noises, are also assumed to additively act both on the state and on the output equations. Upon introducing several deterministic ...

متن کامل

On the Behavior of the Laplacian of Gaussian for Junction Models

This paper analyzes the behavior of diierent junction models in scale space. In this perspective, we study the behavior of linear models (L,Y and X models) and linear multi-models (two adjacent corners with innnite extent and a closed triangular model) with constant illumination, linear models with non-constant illumination and a non-linear model (curved junctions). The study shows under which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006