Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium.
نویسندگان
چکیده
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations, and consequently, it is frequently detected as a major water contaminant in areas where there is extensive use. We constructed a linuron [N-(3,4-dichlorophenyl)-N-methoxy-N-methylurea]- and diuron-mineralizing two-member consortium by combining the cooperative degradation capacities of the diuron-degrading organism Arthrobacter globiformis strain D47 and the linuron-mineralizing organism Variovorax sp. strain SRS16. Neither of the strains mineralized diuron alone in a mineral medium, but combined, the two strains mineralized 31 to 62% of the added [ring-U-(14)C]diuron to (14)CO(2), depending on the initial diuron concentration and the cultivation conditions. The constructed consortium was used to initiate the degradation and mineralization of diuron in soil without natural attenuation potential. This approach led to the unexpected finding that Variovorax sp. strain SRS16 was able to mineralize diuron in a pure culture when it was supplemented with appropriate growth substrates, making this strain the first known bacterium capable of mineralizing diuron and representatives of both the N,N-dimethyl- and N-methoxy-N-methyl-substituted phenylurea herbicides. The ability of the coculture to mineralize microgram-per-liter levels of diuron was compared to the ability of strain SRS16 alone, which revealed the greater extent of mineralization by the two-member consortium (31 to 33% of the added [ring-U-(14)C]diuron was mineralized to (14)CO(2) when 15.5 to 38.9 mug liter(-1) diuron was used). These results suggest that the consortium consisting of strains SRS16 and D47 could be a promising candidate for remediation of soil and water contaminated with diuron and linuron and their shared metabolite 3,4-dichloroaniline.
منابع مشابه
Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology.
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations and, consequently, it is frequently detected as a major soil and water contaminant in areas where there is extensive use. Diuron has the unfortunate combination of being strongly adsorbed by soil organic matter particles and, hence, slowly degraded in the environme...
متن کاملHylA, an alternative hydrolase for initiation of catabolism of the phenylurea herbicide linuron in Variovorax sp. strains.
Variovorax sp. strain WDL1, which mineralizes the phenylurea herbicide linuron, expresses a novel linuron-hydrolyzing enzyme, HylA, that converts linuron to 3,4-dichloroaniline (DCA). The enzyme is distinct from the linuron hydrolase LibA enzyme recently identified in other linuron-mineralizing Variovorax strains and from phenylurea-hydrolyzing enzymes (PuhA, PuhB) found in Gram-positive bacter...
متن کاملIsolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon.
A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the alpha-subdivision of the proteobacteria. Strain SRS2...
متن کاملGrowth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis ...
متن کاملRemoval of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments
Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photoFenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water ta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 8 شماره
صفحات -
تاریخ انتشار 2008