Inference for Comparing Two Treatments Using Kernel Density Estimation

نویسندگان

  • Sibabrata Banerjee
  • Sunil Dhar
  • Farid Kianifard
چکیده

In randomized clinical trials, nonparametric approaches are considered when assumptions of a parametric approach are not reasonable. Nonparametric approaches have typically concentrated on hypothesis testing and, unlike parametric approaches, have not been amenable to providing measures of treatment efficacy. If X and Y denote the random variables representing the responses on two treatments A and B, respectively, P(Y>X) is an intuitive measure of efficacy. We consider point and interval estimation of P(Y>X) using kernel density estimation and bootstrapping. We illustrate this methodology on a data set, where comparison is made with point and interval estimates obtained by inverting the nonparametric Wilcoxon-Mann-Whitney test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection

The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Kernel Methods for Nonparametric Bayesian Inference of Probability Densities and Point Processes

Nonparametric kernel methods for estimation of probability densities and point process intensities have long been of interest to researchers in statistics and machine learning. Frequentist kernel methods are widely used, but provide only a point estimate of the unknown density. Additionally, in frequentist kernel density methods, it can be difficult to select appropriate kernel parameters. The ...

متن کامل

nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference∗

Nonparametric kernel density and local polynomial regression estimators are very popular in Statistics, Economics, and many other disciplines. They are routinely employed in applied work, either as part of the main empirical analysis or as a preliminary ingredient entering some other estimation or inference procedure. This article describes the main methodological and numerical features of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009