Clickable Substrate Mimics Enable Imaging of Phospholipase D Activity

نویسندگان

  • Timothy W. Bumpus
  • Jeremy M. Baskin
چکیده

Chemical imaging techniques have played instrumental roles in dissecting the spatiotemporal regulation of signal transduction pathways. Phospholipase D (PLD) enzymes affect cell signaling by producing the pleiotropic lipid second messenger phosphatidic acid via hydrolysis of phosphatidylcholine. It remains a mystery how this one lipid signal can cause such diverse physiological and pathological signaling outcomes, due in large part to a lack of suitable tools for visualizing the spatial and temporal dynamics of its production within cells. Here, we report a chemical method for imaging phosphatidic acid synthesis by PLD enzymes in live cells. Our approach capitalizes upon the enzymatic promiscuity of PLDs, which we show can accept azidoalcohols as reporters in a transphosphatidylation reaction. The resultant azidolipids are then fluorescently tagged using the strain-promoted azide-alkyne cycloaddition, enabling visualization of cellular membranes bearing active PLD enzymes. Our method, termed IMPACT (Imaging Phospholipase D Activity with Clickable Alcohols via Transphosphatidylation), reveals pools of basal and stimulated PLD activities in expected and unexpected locations. As well, we reveal a striking heterogeneity in PLD activities at both the cellular and subcellular levels. Collectively, our studies highlight the importance of using chemical tools to directly visualize, with high spatial and temporal resolution, the subset of signaling enzymes that are active.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDIES ON PHOSPHOLIPASE C FROM MELIA AZADIRACHTA SEEDS

The activity of phospholipase C in crude enzymatic preparation of Melia azadiracht seeds (Neem seeds) was studied by the use of lecithin as a substrate in aqueous medium. The enzyme activity was found optimum at pH 2.5 and temperature 35?C. The phospholipase C was found heat labile, being inactivated 88% within 10 minutes at 90°C

متن کامل

The substrate specificity of brain microsomal phospholipase D.

Neurotransmitters activate a phospholipase D that is though to specifically hydrolyse phosphatidylcholine. This enzyme has a unique property known as transphosphatidylation: in the presence of an appropriate nucleophilic receptor such as an alcohol, phospholipase D will catalyse the production of phosphatidyl-alcohol. We have studied phospholipase D using an in vitro assay that uses [3H]butanol...

متن کامل

Fluorogenic probes to monitor cytosolic phospholipase A2 activity.

Arachidonic acid derivatives equipped with either one or two fluorescent groups attached to the tip of the alkyl chains were synthesized and shown to function as inhibitor and substrate probes of cPLA2. The inhibitor probe was demonstrated to perform dual functions of inhibition and imaging while the substrate probe could be used for activity assay.

متن کامل

Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fa...

متن کامل

Stimulation of Ca2+-activated human platelet phospholipase A2 by diacylglycerol.

We examined the effect of diacylglycerol on Ca2+-dependent phospholipase A2 from human platelets. Phospholipase A2 was solubilized and partially purified to a stable form in the presence of n-octyl beta-D-glucopyranoside (octyl glucoside), and its enzymic activity was determined with sonicated 2.5 microM-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (arachidonoyl-PC) as substrate. Phos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017