Nested Sequents
نویسنده
چکیده
We see how nested sequents, a natural generalisation of hypersequents, allow us to develop a systematic proof theory for modal logics. As opposed to other prominent formalisms, such as the display calculus and labelled sequents, nested sequents stay inside the modal language and allow for proof systems which enjoy the subformula property in the literal sense. In the first part we study a systematic set of nested sequent systems for all normal modal logics formed by some combination of the axioms for seriality, reflexivity, symmetry, transitivity and euclideanness. We establish soundness and completeness and some of their good properties, such as invertibility of all rules, admissibility of the structural rules, termination of proof-search, as well as syntactic cut-elimination. In the second part we study the logic of common knowledge, a modal logic with a fixpoint modality. We look at two infinitary proof systems for this logic: an existing one based on ordinary sequents, for which no syntactic cut-elimination procedure is known, and a new one based on nested sequents. We see how nested sequents, in contrast to ordinary sequents, allow for syntactic cut-elimination and thus allow us to obtain an ordinal upper bound on the length of proofs.
منابع مشابه
Proof Theory for Indexed Nested Sequents
Fitting’s indexed nested sequents can be used to give deductive systems to modal logics which cannot be captured by pure nested sequents. In this paper we show how the standard cut-elimination procedure for nested sequents can be extended to indexed nested sequents, and we discuss how indexed nested sequents can be used for intuitionistic modal logics.
متن کاملLabelled Tree Sequents, Tree Hypersequents and Nested (Deep) Sequents
We identify a subclass of labelled sequents called “labelled tree sequents” and show that these are notational variants of tree-hypersequents in the sense that a sequent of one type can be represented naturally as a sequent of the other type. This relationship can be extended to nested (deep) sequents using the relationship between tree-hypersequents and nested (deep) sequents, which we also sh...
متن کاملInducing Syntactic Cut-Elimination for Indexed Nested Sequents
The key to the proof-theoretical study of a logic is a cutfree proof calculus. Unfortunately there are many logics of interest lacking suitable proof calculi. The proof formalism of nested sequents was recently generalised to indexed nested sequents in order to yield cutfree proof calculi for extensions of the modal logic K by Geach (LemmonScott) axioms. The proofs of completeness and cut-elimi...
متن کاملModal interpolation via nested sequents
The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for moda...
متن کاملNested Sequents for Provability Logic GLP
We present a proof system for the provability logic GLP in the formalism of nested sequents and prove the cut elimination theorem for it. As an application, we obtain the reduction of GLP to its important fragment called J syntactically.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1004.1845 شماره
صفحات -
تاریخ انتشار 2010