A Statistical Model to Forecast Short-Term Atlantic Hurricane Intensity
نویسندگان
چکیده
An alternative 24-h statistical hurricane intensity model is presented and verified for 13 hurricanes during the 2004–05 seasons. The model uses a new method involving a discriminant function analysis (DFA) to select from a collection of multiple regression equations. These equations were developed to predict the future 24-h wind speed increase and the 24-h pressure drop that were constructed from a dataset of 103 hurricanes from 1988 to 2003 that utilized 25 predictors of rapid intensification. The accuracy of the 24-h wind speed increase models was tested and compared with the official National Hurricane Center (NHC) 24-h intensity forecasts, which are currently more accurate on average than other 24-h intensity models. Individual performances are shown for Hurricanes Charley (2004) and Katrina (2005) along with a summary of all 13 hurricanes in the study. The average error for the 24-h wind speed increase models was 11.83 kt (1 kt 0.5144 m s ) for the DFA-selected models and 12.53 kt for the official NHC forecast. When the DFA used the correctly selected model (CSM) for the same cases, the average error was 8.47 kt. For the 24-h pressure reduction models, the average error was 7.33 hPa for the DFA-selected models, and 5.85 hPa for the CSM. This shows that the DFA performed well against the NHC, but improvements can still be made to make the accuracy even better.
منابع مشابه
An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins
Updates to the Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin are described. SHIPS combines climatological, persistence, and synoptic predictors to forecast intensity changes using a multiple regression technique. The original version of the model was developed for the Atlantic basin and was run in near–real time at the Hurricane Research Division beginning in ...
متن کاملEvaluation of long-term trends in tropical cyclone intensity forecasts
The National Hurricane Center and Joint Typhoon Warning Center operational tropical cyclone intensity forecasts for the three major northern hemisphere tropical cyclone basins (Atlantic, eastern North Pacific, and western North Pacific) for the past two decades are examined for long-term trends. Results show that there has been some marginal improvement in the mean absolute error at 24 and 48 h...
متن کاملThe Impact of Dropwindsonde Data on GFDL Hurricane Model Forecasts Using Global Analyses
The National Centers for Environmental Prediction (NCEP) and the Hurricane Research Division (HRD) of NOAA have collaborated to postprocess Omega dropwindsonde (ODW) data into the NCEP operational global analysis system for a series of 14 cases of Atlantic hurricanes (or tropical storms) from 1982 to 1989. Objective analyses were constructed with and without ingested ODW data by the NCEP operat...
متن کاملHow quickly can we adapt to change? An assessment of hurricane damage mitigation efforts using forecast uncertainty
Our ability to adapt to extreme weather is increasingly relevant as the frequency and intensity of these events alters due to climate change. It is important to understand the effectiveness of adaptation given the uncertainty associated with future climate events. However, there has been little analysis of short-term adaptation efforts. We propose a novel approach of using errors from hurricane...
متن کاملAtlantic Hurricane Database Uncertainty and Presentation of a New Database Format
‘‘Best tracks’’ are National Hurricane Center (NHC) poststorm analyses of the intensity, central pressure, position, and size of Atlantic and eastern North Pacific basin tropical and subtropical cyclones. This paper estimates the uncertainty (average error) for Atlantic basin best track parameters through a survey of the NHC Hurricane Specialists who maintain and update the Atlantic hurricane d...
متن کامل