Open Mappings of Probability Measures and the Skorohod Representation Theorem

نویسندگان

  • Vladimir I. Bogachev
  • Alexander V. Kolesnikov
چکیده

We prove that for a broad class of spaces X and Y (including all Souslin spaces), every open surjective mapping f : X ! Y induces the open mapping 7 ! f ?1 between the spaces of probability measures P(X) and P(Y). Connections with the Skorohod representation theorem and its generalizations are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skorohod Representation Theorem Via Disintegrations

Let (μn : n ≥ 0) be Borel probabilities on a metric space S such that μn → μ0 weakly. Say that Skorohod representation holds if, on some probability space, there are S-valued random variables Xn satisfying Xn ∼ μn for all n and Xn → X0 in probability. By Skorohod’s theorem, Skorohod representation holds (with Xn → X0 almost uniformly) if μ0 is separable. Two results are proved in this paper. Fi...

متن کامل

A NOTE ON INTUITIONISTIC FUZZY MAPPINGS

In this paper, the concept of intuitionistic fuzzy mapping as a generalization of fuzzy mapping is presented, and its' relationship with intuitionistic fuzzy relations is derived. Moreover, some basicoperations of intuitionistic fuzzy mappings are defined, hence we can conclude that all of intuitionistic fuzzy mappings constitute a soft algebrawith respect to these operations. Afterwards, the A...

متن کامل

The Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application

In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...

متن کامل

A Skorohod Representation Theorem for Uniform Distance

Let μn be a probability measure on the Borel σ-field on D[0, 1] with respect to Skorohod distance, n ≥ 0. Necessary and sufficient conditions for the following statement are provided. On some probability space, there are D[0, 1]-valued random variables Xn such that Xn ∼ μn for all n ≥ 0 and ‖Xn − X0‖ → 0 in probability, where ‖·‖ is the sup-norm. Such conditions do not require μ0 separable unde...

متن کامل

Skorohod Representation on a given Probability Space

Let (Ω,A, P ) be a probability space, S a metric space, μ a probability measure on the Borel σ-field of S, and Xn : Ω → S an arbitrary map, n = 1, 2, . . .. If μ is tight and Xn converges in distribution to μ (in HoffmannJørgensen’s sense), then X ∼ μ for some S-valued random variable X on (Ω,A, P ). If, in addition, the Xn are measurable and tight, there are S-valued random variables ∼ Xn and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007