Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century
نویسندگان
چکیده
The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry– climate model (UK Met Office’s Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m−2. This is opposed by a positive ozone RF of 0.05 W m−2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m−2, which would greatly outweigh the climate benefits of nonmethane tropospheric ozone precursor reductions. A small fraction (∼ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m−2) for RCP4.5 and a negative RF (−0.07 W m−2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02|W m−2) for the stratospheric, tropospheric and whole-atmosphere RFs.
منابع مشابه
Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations
The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previou...
متن کاملAnthropogenic radiative forcing time series from pre - industrial times until 2010
In order to use knowledge of past climate change to improve our understanding of the sensitivity of the climate system, detailed knowledge about the time development of radiative forcing (RF) of the earth atmosphere system is crucial. In this study, time series of anthropogenic forcing of climate from pre-industrial times until 2010, for all well established forcing agents, are estimated. This ...
متن کاملAtmospheric Circulation Trends, 1950-2000: The Relative Roles of Sea Surface Temperature Forcing and Direct Atmospheric Radiative Forcing
We examine the relative roles of direct atmospheric radiative forcing (due to observed changes in well-mixed greenhouse gases, tropospheric and stratospheric ozone, sulfate and volcanic aerosols, and solar output) and observed sea surface temperature (SST) forcing of global atmospheric circulation trends during the second half of the 20 century using atmospheric general circulation modeling exp...
متن کاملAn exploration of ozone changes and their radiative forcing prior to the chlorofluorocarbon era
Using historical observations and model simulations, we investigate ozone trends prior to the mid-1970s onset of halogen-induced ozone depletion. Though measurements are quite limited, an analysis based on multiple, independent data sets (direct and indirect) provides better constraints than any individual set of observations. We find that three data sets support an apparent long-term stratosph...
متن کاملClear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models
We have estimated changes in surface solar ultraviolet (UV) radiation under cloud free conditions in the 21st century based on simulations of 11 coupled ChemistryClimate Models (CCMs). The total ozone columns and vertical profiles of ozone and temperature projected from CCMs were used as input to a radiative transfer model in order to calculate the corresponding erythemal irradiance levels. Tim...
متن کامل