Frontogenesis in the North Pacific Oceanic Frontal Zones--A Numerical Simulation

نویسندگان

  • Michael S. Dinniman
  • Michele M. Rienecker
  • MICHAEL S. DINNIMAN
  • MICHELE M. RIENECKER
چکیده

A primitive equation model [Geophysical Fluid Dynamics Laboratory’s (GFDL’s) MOM 2] with one degree horizontal resolution is used to simulate the seasonal cycle of frontogenesis in the subarctic frontal zone (SAFZ) and the subtropical frontal zone (STFZ) of the North Pacific Ocean. The SAFZ in the model contains deep (greater than 500 m in some places) regions with seasonally varying high gradients in temperature and salinity. The gradients generally weaken toward the east. The STFZ consists of a relatively shallow (less than 200 m in most places) region of high gradient in temperature that disappears in the summer/fall. The high gradient in salinity in the STFZ maintains its strength year round and extends across almost the entire basin. The model simulates the location and intensity of the frontal zones in good agreement with climatological observations: generally to within two degrees of latitude and usually at the same or slightly stronger intensity. The seasonal cycle of the frontal zones also matches observations well, although the subarctic front is stronger than observed in winter and spring. The model balances are examined to identify the dominant frontogenetic processes. The seasonal cycle of temperature frontogenesis in the surface level of the model is governed by both the convergence of the winddriven Ekman transport and differential heating/cooling. In the STFZ, the surface Ekman convergence is frontogenetic throughout the year as opposed to surface heating, which is frontogenetic during winter and strongly frontolytic during late spring and summer. The subarctic front at 408N in the central Pacific (not the maximum wintertime gradient in the model, but its location in summer and the location where variability is in best agreement with the observations) undergoes frontogenesis during spring and summer due to surface Ekman convergence and differential horizontal shear. The frontolysis during winter is due to the joint influence of differential heat flux and vertical convection in opposition to frontogenetic Ekman convergence. The seasonal cycle of salinity frontogenesis in the surface level is governed by Ekman convergence, differential surface freshwater flux, and differential vertical convection (mixing). For salinity, the differential convection is primarily forced by Ekman convergence and differential cooling, thereby linking the salinity and temperature frontogenesis/frontolysis. Below the surface level, the seasonal frontogenesis/frontolysis is only significant in the western and central SAFZ where it is due primarily to differential mixing (mostly in winter and early spring) with contributions from convergence and shearing advection during fall and winter. The shearing advection in the model western SAFZ is likely a result of the Kuroshio overshooting its observed separation latitude. The model’s vertical mixing through convective adjustment is found to be very important in controlling much of the frontogenesis/frontolysis. Thus, the seasonal cycle of the surface frontal variability depends strongly on the subsurface structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

North Pacific Climate Response to Freshwater Forcing in the Subarctic North Atlantic: Oceanic and Atmospheric Pathways

Sudden changes of the Atlantic meridional overturning circulation (AMOC) are believed to have caused large, abrupt climate changes over many parts of the globe during the last glacial and deglacial period. This study investigates the mechanisms by which a large freshwater input to the subarctic North Atlantic and an attendant rapid weakening of the AMOC influence North Pacific climate by analyz...

متن کامل

The Structure and Evolution of a Continental Winter Cyclone. Part II: Frontal Forcing of an Extreme Snow Event

The production of a narrow, heavy, occasionally convective snowband that fell within a modest surface cyclone on 19 January 1995 is examined using gridded model output from a successful numerical simulation performed using the University of Wisconsin—Nonhydrostatic Modeling System. It is found that the snowband was produced by a thermally direct vertical circulation forced by significant lower-...

متن کامل

Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

S U M M A R Y Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent–ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific–North America Plate boundary motion today is concent...

متن کامل

Oceanic restratification forced by surface frontogenesis

Potential vorticity (PV) conservation implies a strong constraint on the time evolution of the mean density at a given depth. We show that, on an f -plane and in the absence of sources and sinks of PV, it only depends on two terms, namely the time evolution of the product between density anomaly and relative vorticity, and the vertical PV flux. This primitive-equation result, that applies at an...

متن کامل

Air-sea interaction at an oceanic front: Implications for frontogenesis and primary production

[1] Based on recent satellite observations, we hypothesize that there exists a significant air-sea interaction at the shelfbreak front in the East China Sea. An idealized oceanatmosphere coupled model was designed to test this hypothesis and to study the physical processes involved in such an interaction, with emphasis on the oceanic part. A positive feedback between ocean and atmosphere was id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016