Bone Morphogenetic Protein‐2 Decreases MicroRNA‐30b and MicroRNA‐30c to Promote Vascular Smooth Muscle Cell Calcification
نویسندگان
چکیده
BACKGROUND Vascular calcification resembles bone formation and involves vascular smooth muscle cell (SMC) transition to an osteoblast-like phenotype to express Runx2, a master osteoblast transcription factor. One possible mechanism by which Runx2 protein expression is induced is downregulation of inhibitory microRNAs (miR). METHODS AND RESULTS Human coronary artery SMCs (CASMCs) treated with bone morphogenetic protein-2 (BMP-2; 100 ng/mL) demonstrated a 1.7-fold (P<0.02) increase in Runx2 protein expression at 24 hours. A miR microarray and target prediction database analysis independently identified miR-30b and miR-30c (miR-30b-c) as miRs that regulate Runx2 expression. Real-time-polymerase chain reaction confirmed that BMP-2 decreased miR-30b and miR-30c expression. A luciferase reporter assay verified that both miR-30b and miR-30c bind to the 3'-untranslated region of Runx2 mRNA to regulate its expression. CASMCs transfected with antagomirs to downregulate miR-30b-c demonstrated significantly increased Runx2, intracellular calcium deposition, and mineralization. Conversely, forced expression of miR-30b-c by transfection with pre-miR-30b-c prevented the increase in Runx2 expression and mineralization of SMCs. Calcified human coronary arteries demonstrated higher levels of BMP-2 and lower levels of miR-30b than did noncalcified donor coronary arteries. CONCLUSIONS BMP-2 downregulates miR-30b and miR-30c to increase Runx2 expression in CASMCs and promote mineralization. Strategies that modulate expression of miR-30b and miR-30c may influence vascular calcification.
منابع مشابه
Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification
Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease (CKD). High phosphate levels promote VC by inducing abnormalities in mineral and bone metabolism. Previously, we demonstrated that magnesium (Mg(2+)) prevents inorganic phosphate- (Pi-) induced VC in human aortic vascular smooth muscle cells (HAVSMC). As microRNAs (miR) modulate gene expression, we invest...
متن کاملبررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلولهای عضلهی صاف دیوارهی رگها
Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...
متن کاملMicroRNA-30 inhibits neointimal hyperplasia by targeting Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ)
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury and whether ectopic expression of miR-30...
متن کاملRegulation of Vascular Calcification by Osteoclast Regulatory Factors RANKL and OPG Regulation of Vascular Calcification: Roles of Phosphate and Osteopontin Angiogenesis and Pericytes in the Initiation of Ectopic Calcification Bone Morphogenetic Proteins in Vascular Calcification
Vascular calcification is a common problem among the elderly and those with chronic kidney disease (CKD) and diabetes. The process of tunica media vascular calcification in CKD appears to involve a phenotypic change in the vascular smooth muscle cell (VSMC) resulting in cell-mediated mineralization of the extracellular matrix. The bone morphogenetic proteins (BMPs) are important regulators in o...
متن کاملVascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium.
Arterial calcification, common in vascular diseases, involves vascular smooth muscle cell (VSMC) transformation to an osteoblast phenotype. Clinical studies suggest that magnesium may prevent this, but mechanisms are unclear. We assessed whether increasing magnesium levels reduce VSMC calcification and differentiation and questioned the role of the Mg(2+) transporter, transient receptor potenti...
متن کامل