Locally Adaptive Nearest Neighbor Algorithms

نویسندگان

  • Dietrich Wettschereck
  • Thomas G. Dietterich
چکیده

Four versions of a k-nearest neighbor algorithm with locally adaptive k are introduced and compared to the basic k-nearest neighbor algorithm (kNN). Locally adaptive kNN algorithms choose the value of k that should be used to classify a query by consulting the results of cross-validation computations in the local neighborhood of the query. Local kNN methods are shown to perform similar to kNN in experiments with twelve commonly used data sets. Encouraging results in three constructed tasks show that local methods can significantly outperform kNN in specific applications. Local methods can be recommended for on-line learning and for applications where different regions of the input space are covered by patterns solving different sub-tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Statistical Confidence-Based Adaptive Nearest Neighbor Algorithm for Pattern Classification

The k-nearest neighbor rule is one of the simplest and most attractive pattern classification algorithms. It can be interpreted as an empirical Bayes classifier based on the estimated a posteriori probabilities from the k nearest neighbors. The performance of the k-nearest neighbor rule relies on the locally constant a posteriori probability assumption. This assumption, however, becomes problem...

متن کامل

Adaptive Metric nearest Neighbor Classification

Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classification method to try to minimize bias. We use a Chisqu...

متن کامل

Locally Adaptive Metric Nearest Neighbor Classiication

Nearest neighbor classiication assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with nite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classiication method to try to minimize bias. We use a Chi-square...

متن کامل

Adaptive Nearest Neighbor Classifier Based on Supervised Ellipsoid Clustering

Nearest neighbor classifier is a widely-used effective method for multi-class problems. However, it suffers from the problem of the curse of dimensionality in high dimensional space. To solve this problem, many adaptive nearest neighbor classifiers were proposed. In this paper, a locally adaptive nearest neighbor classification method based on supervised learning style which works well for the ...

متن کامل

An Adaptive Metric Machine for Pattern Classification

Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classification method to try to minimize bias. We use a Chi-sq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993