On the Global Attractivity of a Max-Type Difference Equation

نویسندگان

  • Ali Gelişken
  • Cengiz Çinar
  • Yong Zhou
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On positive solutions of some classes of max-type systems of difference equations

Keywords: System of difference equations Global attractivity Eventually constant solutions Max-type difference equation a b s t r a c t Global attractivity results on positive solutions of some special cases of the next max-type system of difference equations

متن کامل

On the Dynamic of a Nonautonomous

Nonlinear difference equations of higher order are important in applications; such equations appear naturally as discrete analogues of differential and delay differential equations which model various diverse phenomena in biology, ecology, economics, physics and engineering. The study of dynamical properties of such equations is of great importance in many areas. The autonomous difference equat...

متن کامل

On the periodic nature of some max-type difference equations

Recently there has been a lot of interest in studying the global attractivity, the boundedness character, and the periodicity nature of nonlinear difference equations. In [5, 6, 8] some global convergence results were established which can be applied to nonlinear difference equations in proving that every solution of these equations converges to a periodic solution (which need not necessarily b...

متن کامل

Global Attractivity and Periodic Nature of a Difference Equation

Our goal in this paper is to investigate the global stability character and the periodicity of the solutions of the difference equation Where the initial conditions x ,x ,...,x are arbitrary positive real numbers, r = max{l, k} is nonnegative integer –r –r+1 0 and a, b, c, d are positive constants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009