Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple
نویسندگان
چکیده
Fe deficiency is a widespread nutritional disorder in plants. The basic helix-loop-helix (bHLH) transcription factors (TFs), especially Ib subgroup bHLH TFs which are involved in iron uptake, have been identified. In this study, an IVc subgroup bHLH TF MdbHLH104 was identified and characterized as a key component in the response to Fe deficiency in apple. The overexpression of the MdbHLH104 gene noticeably increased the H(+) -ATPase activity under iron limitation conditions and the tolerance to Fe deficiency in transgenic apple plants and calli. Further investigation showed that MdbHLH104 proteins bonded directly to the promoter of the MdAHA8 gene, thereby positively regulating its expression, the plasma membrane (PM) H(+) -ATPase activity and Fe uptake. Similarly, MdbHLH104 directly modulated the expression of three Fe-responsive bHLH genes, MdbHLH38, MdbHLH39 and MdPYE. In addition, MdbHLH104 interacted with 5 other IVc subgroup bHLH proteins to coregulate the expression of the MdAHA8 gene, the activity of PM H(+) -ATPase and the content of Fe in apple calli. Therefore, MdbHLH104 acts together with other apple bHLH TFs to regulate Fe uptake by modulating the expression of the MdAHA8 gene and the activity of PM H(+) -ATPase in apple.
منابع مشابه
Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کاملImprovement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple
Autophagy is a major and conserved pathway for delivering and recycling unwanted proteins or damaged organelles to be degraded in the vacuoles. AuTophaGy-related (ATG) protein 18a has been established as one of the essential components for autophagy occurrence in Arabidopsis thaliana. We previously cloned the ATG18a homolog from Malus domestica (MdATG18a) and monitored its responsiveness to var...
متن کاملThe Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots
Cadmium (Cd) is one of the most dangerous heavy metal pollutants in the environment and is toxic to animal and plant cells. On the other hand, iron (Fe) is an essential element for plant growth and development. The chlorosis of plant leaves under cadmium stress is similar to the typical symptom of iron deficiency. Recently, several Arabidopsis basic/helix-loop-helix (bHLH) transcription factors...
متن کاملThe transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants.
Iron is essential for most living organisms and is often the major limiting nutrient for normal growth. Plants induce iron utilization systems under conditions of low iron availability, but the molecular mechanisms of gene regulation under iron deficiency remain largely unknown. We identified the rice transcription factor IDEF1, which specifically binds the iron deficiency-responsive cis-acting...
متن کاملImprovement of In vitro Proliferation of Apple (Malus domestica Borkh.) by Enriched Nano Chelated Iron Fertilizer
Nano-fertilizers can increase value of products in agriculture. Iron plays many important and essential roles in plant growth and development as compared to other micronutrients. In the present study, effects of different levels of enriched nano chelated Iron fertilizer (25, 50, 100, and 200 mg l-1) were investigated in comparison with the common Iron (FeSO4.7H2O) on in vitro proliferation of ...
متن کامل