Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees
نویسندگان
چکیده
1. While it is well established that leaf litter decomposition is controlled by climate and substrate quality at broad spatial scales, conceptual frameworks that consider how local-scale factors affect litter decay in heterogeneous landscapes are generally lacking. 2. A critical challenge in disentangling the relative impacts of and interactions among local-scale factors is that these factors frequently covary due to feedbacks between plant and soil communities. For example, forest plots dominated by trees that associate with ectomycorrhizal (ECM) fungi often differ from those dominated by trees that associate with arbuscular mycorrhizal (AM) fungi in terms of their litter quality, microbial community structure and inorganic nutrient availability. Here, we evaluate the extent to which such factors alter leaf litter decomposition rates. 3. To characterize variations in decomposition rates, we compared decay rates of high-quality litter (maple; AM) and low-quality litter (oak; ECM) across forest plots representing a gradient in litter matrix quality and nitrogen (N) availability driven by the relative proportions of AM and ECM trees in each plot. In experiment two, we added litter from two AM and three ECM tree species to forest plots with either a high-quality litter matrix and high N availability (i.e. AM-dominated plots) or a low-quality litter matrix and low N availability (i.e. ECM-dominated plots). In both experiments, we found that AM litter decomposed more rapidly than ECM litter, and this effect was enhanced in AM-dominated plots. 4. Then, to separate the contributions of litter matrix effects from N availability effects, we added N fertilizer to a subset of plots from experiment two. Nitrogen addition increased decay rates of highquality litter across all sites, but had no effect on low-quality litter, suggesting that low N availability, not litter matrix quality, constrains decomposition of high-quality litters. Hence, N availability appears to alter litter decomposition patterns independently of litter matrix properties. 5. Synthesis. Our results indicate that shifts in the relative abundance of ECMand AM-associated trees in a plot or stand have the potential to affect litter decay rates through both changes in litter quality as well as through alterations of the local-scale soil environment.
منابع مشابه
Mycorrhizal associations of trees have different indirect effects on organic matter decomposition
1. Organic matter decomposition is the main process by which carbon (C) is lost from terrestrial ecosystems, and mycorrhizal associations of plants (i.e. arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM)) may have different indirect effects on this loss pathway. AM and ECM plants differ in the soil decomposers they promote and the quality of litter they produce, which may result in differen...
متن کاملSYNTHESIS AND EMERGING IDEAS Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition
Temperate forests receive some of the highest rates of nitrogen (N) deposition in the world. While numerous studies have investigated the effects of N enrichment on forests, there is little consensus on why some forests become N saturated while others do not. To investigate this, we used a multi-factor metaanalysis to simultaneously estimate the relative importance of several environmental, exp...
متن کاملRoot-induced changes in nutrient cycling in forests depend on exudation rates
(1) While it is well-known that trees release carbon (C) to soils as root exudates, the factors that control the magnitude and biogeochemical impacts of this flux are poorly understood. (2) We quantified root exudation and microbially-mediated nutrient fluxes in the rhizosphere for four ~80 year-old tree species in a deciduous hardwood forest, Indiana, USA. We hypothesized that trees that exude...
متن کاملPhosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees.
Although much is known about how trees and their associated microbes influence nitrogen cycling in temperate forest soils, less is known about biotic controls over phosphorus (P) cycling. Given that mycorrhizal fungi are instrumental for P acquisition and that the two dominant associations - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - possess different strategies for acquiring...
متن کاملSubstrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils.
Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study we...
متن کامل