Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna.
نویسندگان
چکیده
We present evidence that Mg2+ antagonism is one mechanism for acute toxicity of waterborne Ni to Daphnia magna. Acutely, adult D. magna were exposed to either control or 694 microg Ni L(-1) as NiSO4 in moderately soft water (45 mg L(-1) as CaCO3; background Ni approximately 1 microg Ni L(-1)) for 48 h without feeding. Chronically, adults were exposed to either control or 131 microg Ni L(-1) for 14 days (fed exposure). These concentrations were approximately 65% and 12%, respectively, of the measured 48-h LC50 (1068 microg Ni L(-1)) for daphnid neonates in this water quality. The clearest effect of Ni exposure was on Mg2+ homeostasis, as whole-body [Mg2+] was significantly decreased both acutely and chronically by 18%. Additionally, unidirectional Mg2+ uptake rate (measured with the stable isotope 26Mg) was significantly decreased both acutely and chronically by 49 and 47%, respectively, strongly suggesting that Ni is toxic to D. magna due at least in part to Mg2+ antagonism. No impact was observed on the whole-body concentrations or unidirectional uptake rates of Ca2+ during either acute or chronic Ni exposure, while only minor effects were seen on Na+ and Cl- balance. No acute toxic effect was seen on respiratory parameters, as both oxygen consumption rate (MO2) and whole-body hemoglobin concentration ([Hb]) were conserved. Chronically, however, Ni impaired respiratory function, as both MO2 and [Hb] were significantly reduced by 31 and 68%, respectively. Acutely, Ni accumulation was substantial, rising to a plateau between 24 and 48 h of approximately 15 microg g(-1) wet weight--an increase of approximately 25-fold over control concentrations. Mechanisms of acute toxicity of Ni in D. magna differ from those in fish; it is likely that such mechanistic differences also exist for other metals.
منابع مشابه
Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus
Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...
متن کاملEffects of chronic waterborne nickel exposure on two successive generations of Daphnia magna.
In a 21-d chronic toxicity test in which an F0 generation of Daphnia magna were exposed to waterborne Ni, the no-observable-effect concentration (for survival, reproduction, and growth) was 42 microg Ni L(-1), or 58% of the measured 21-d median lethal concentration (LC50) of 71.9 microg Ni L(-1) (95% confidence interval, 56.5-95.0). Chronic exposure to 85 microg Ni L(-1) caused marked decreases...
متن کاملEffects of chronic dietary copper exposure on growth and reproduction of Daphnia magna.
A matter of current, intense debate with regard to the effects of metals on biological systems is the potential toxicity of metals associated with food particles. Recently developed biotic ligand models (BLM), which predict the toxicity of waterborne metals, may not be valid if the dietary exposure route contributes to metal toxicity. The present study is, to our knowledge, the first that inves...
متن کاملIdentification of phototransformation products of prednisone by sunlight: toxicity of the drug and its derivatives on aquatic organisms.
Solar simulator irradiation of an aqueous suspension of prednisone, a widely prescribed drug, produces seven photochemical derivatives. The compounds have been identified on the basis of their physical features. All the chemicals have been tested to evaluate their toxic effects on freshwater organisms from different trophic levels. The rotifer Brachionus calyciflorus and two crustaceans, the cl...
متن کاملToxicity Assessment of Some Conventionally Manufactured Nanoparticles to Daphnia Magna
Background and purpose: Nanoparticles (NPs) are used in different industries, including electronics, pharmaceuticals, cosmetics, healthcare, and environmental processes. Therefore, it is necessary to evaluate their toxicity in the aquatic environment. Materials and methods: The acute toxicity of six different kinds of nano-sized particulates (SiO2, Fe2O3, Al2O3, TiO2, ZnO, and MgO) to Daphnia ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 37 19 شماره
صفحات -
تاریخ انتشار 2003