Forbidden Berge Hypergraphs

نویسندگان

  • Richard P. Anstee
  • Santiago Salazar
چکیده

A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix F , we say that a (0,1)-matrix A has F as a Berge hypergraph if there is a submatrix B of A and some row and column permutation of F , say G, with G 6 B. Letting ‖A‖ denote the number of columns in A, we define the extremal function Bh(m,F ) = max{‖A‖ : A m-rowed simple matrix and no Berge hypergraph F}. We determine the asymptotics of Bh(m,F ) for all 3and 4-rowed F and most 5-rowed F . For certain F , this becomes the problem of determining the maximum number of copies of Kr in a m-vertex graph that has no Ks,t subgraph, a problem studied by Alon and Shikhelman.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turán numbers for Berge - hypergraphs and related 1 extremal problems

4 Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection 5 f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually 6 denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph 7 with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this 8 paper we establish new upper and lower bounds on exr(n,...

متن کامل

Turán numbers for Berge-hypergraphs and related extremal problems

Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this paper we establish new upper and lower bounds on exr(n,Berge-F ) ...

متن کامل

Polynomial Delay and Space Discovery of Connected and Acyclic Sub-hypergraphs in a Hypergraph

In this paper, we study the problem of finding all connected and Berge-acyclic sub-hypergraphs contained in an input hypergraph with potential applications to substructure mining from relational data, where Berge acyclicity is a generalization of a tree and one of the most retricted notion of acyclicity for hypergraphs (Fagin, J. ACM, Vol.30(3), pp.514–550, 1983). As main results, we present ef...

متن کامل

Hypergraph Extensions of the Erdos-Gallai Theorem

Our goal is to extend the following result of Erd˝ os and Gallai for hypergraphs: Theorem 1 (Erd˝ os-Gallai [1]) Let G be a graph on n vertices containing no path of length k. Then e(G) ≤ 1 2 (k − 1)n. Equality holds iff G is the disjoint union of complete graphs on k vertices. We consider several generalizations of this theorem for hypergraphs. This is due to the fact that there are several po...

متن کامل

A Dirac-type theorem for Hamilton Berge cycles in random hypergraphs

A Hamilton Berge cycle of a hypergraph on n vertices is an alternating sequence (v1, e1, v2, . . . , vn, en) of distinct vertices v1, . . . , vn and distinct hyperedges e1, . . . , en such that {v1, vn} ⊆ en and {vi, vi+1} ⊆ ei for every i ∈ [n − 1]. We prove a Dirac-type theorem for Hamilton Berge cycles in random r-uniform hypergraphs by showing that for every integer r ≥ 3 there exists k = k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017