Acoustics of the human middle-ear air space.
نویسندگان
چکیده
The impedance of the middle-ear air space was measured on three human cadaver ears with complete mastoid air-cell systems. Below 500 Hz, the impedance is approximately compliance-like, and at higher frequencies (500-6000 Hz) the impedance magnitude has several (five to nine) extrema. Mechanisms for these extrema are identified and described through circuit models of the middle-ear air space. The measurements demonstrate that the middle-ear air space impedance can affect the middle-ear impedance at the tympanic membrane by as much as 10 dB at frequencies greater than 1000 Hz. Thus, variations in the middle-ear air space impedance that result from variations in anatomy of the middle-ear air space can contribute to inter-ear variations in both impedance measurements and otoacoustic emissions, when measured at the tympanic membrane.
منابع مشابه
Middle ear ventilation status postoperatively after translabyrinthine resection of vestibular schwannoma with mastoid obliteration and Eustachian tube occlusion: is the Eustachian tube enough to ventilate the middle ear without the mastoid air cell system?
BACKGROUND Gas pressure balance is essential for maintaining normal middle ear function. The mucosal surfaces of the middle ear, the mastoid air cell system (MACS), and the Eustachian tube (ET) play a critical role in this process; however, the extent that each of these factors contributes to overall middle ear ventilation is unknown. The objective of this study was to determine if the ET alone...
متن کاملCASE REPORT Pneumolabyrinth After Otic Capsule-Disrupting Temporal Bone Fracture without Direct Connection with the Middle Ear Space
have been several reports on pneumolabyrinth after stapes surgery, it has been rarely observed after temporal bone fracture. Air within the inner ear can be found even in the case having otic capsule-disrupting temporal bone fracture without definite connection with the middle ear space, which suggests the possible connection between the inner ear and the air-filled mastoid or middle ear caviti...
متن کاملA Biological Gear in the Human Middle Ear
A three-dimensional (3D) finite element (FE) model was developed to simulate the motion modes of the human middle ear structures. The model was based entirely on 3D reconstruction obtained from micro Computed Tomography (microCT) imaging. We solve the acoustics-structure interaction problem using COMSOL Multiphysics. Our results show that at low frequencies, the classical hinging motion is domi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 118 2 شماره
صفحات -
تاریخ انتشار 2005