Existence of Boundary Blow up Solutions for Singular or Degenerate Fully Nonlinear Equations
نویسندگان
چکیده
We prove here the existence of boundary blow up solutions for fully nonlinear equations in general domains, for a nonlinearity satisfying KellerOsserman type condition. If moreover the nonlinearity is non decreasing , we prove uniqueness for boundary blow up solutions on balls for operators related to Pucci’s operators.
منابع مشابه
A note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملBlow-up in the Parablic Problems under Nonlinear Boundary Conditions
The paper deals with a degenerate and singular parabolic equation with nonlinear boundary condition. We first get the behavior of the solution at infinity, and establish the critical global existence exponent and critical Fujita exponent for the fast diffusive equation, furthermore give the blow-up set and upper bound of the blow-up rate for the nonglobal solutions.
متن کاملBlow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations
This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources. MSC: 35B33, 35B40, 35K65, 35K55
متن کاملFrom blow-up boundary solutions to equations with singular nonlinearities
In this survey we report on some recent results related to various singular phenomena arising in the study of some classes of nonlinear elliptic equations. We establish qualitative results on the existence, nonexistence or the uniqueness of solutions and we focus on the following types of problems: (i) blow-up boundary solutions of logistic equations; (ii) Lane-Emden-Fowler equations with singu...
متن کاملNonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain
We establish comparison and existence theorems of viscosity solutions of the initial-boundary value problem for some singular degenerate parabolic partial di/erential equations with nonlinear oblique derivative boundary conditions. The theorems cover the capillary problem for the mean curvature 1ow equation and apply to more general Neumann-type boundary problems for parabolic equations in the ...
متن کامل