A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms

نویسندگان

  • Tiffany Harte
  • Graham D. Bruce
  • Jonathan Keeling
  • Donatella Cassettari
چکیده

Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. However, to date iterative Fourier transform algorithms have been predominantly used. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms. © 2014 Optical Society of America OCIS codes: (020.0020) Atomic and molecular physics; (020.1475) Bose-Einstein condensates; (020.7010) Laser trapping; (090.1760) Computer holography; (090.1995) Digital holography; (230.6120) Spatial light modulators. References and links 1. I. Bloch, J. Dalibard, and S. Nascimbene, “Quantum simulations with ultracold quantum gases,” Nat Phys 8, 267–276 (2012). 2. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009). 3. K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009). 4. C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New Journal of Physics 14, 073051 (2012). 5. S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B 21, 1889–1894 (2004). 6. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006). 7. B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New Journal of Physics 13, 043007 (2011). 8. D. Trypogeorgos, T. Harte, A. Bonnin, and C. Foot, “Precise shaping of laser light by an acousto-optic deflector,” Opt. Express 21, 24837–24846 (2013). 9. G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011). 10. G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011). 11. N. Houston, E. Riis, and A. S. Arnold, “Reproducible dynamic dark ring lattices for ultracold atoms,” J. Phys. B 41, 211001 (2008). 12. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158–166 (2003). 13. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008). 14. A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012). 15. J. G. Lee and W. T. Hill III, “Spatial shaping for generating arbitrary optical dipoles traps for ultracold degenerate gases,” (2014). http://arxiv.org/abs/1406.4084. 16. J. R. Hui, X. Wu, and C. Warde, “Addressing large arrays of electrostatic actuators for adaptive optics applications,” Proc. SPIE 5553, 17–27 (2004). 17. J. Fortágh, H. Ott, S. Kraft, A. Günther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002). 18. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA, 1998). 19. M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164 (1996). 20. V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, “Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms,” J. Mod. Opt. 51, 2235–2240 (2004). 21. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys. 64, 1045–1097 (1992). 22. R. Liu, B.-Z. Dong, G.-Z. Yang, and B.-Y. Gu, “Generation of pseudo-nondiffracting beams with use of diffractive phase elements designed by the conjugate-gradient method,” J. Opt. Soc. Am. A 15, 144 (1998). 23. R. Liu, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Design of diffractive phase elements that realize axial-intensity modulation based on the conjugate-gradient method,” J. Opt. Soc. Am. A 15, 689 (1998). 24. R. Liu, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Diffractive phase elements that synthesize color pseudonondiffracting beams,” Opt. Lett. 23, 633 (1998). 25. G. Zhou, X. Yuan, P. Dowd, Y.-L. Lam, and Y.-C. Chan, “Efficient method for evaluation of the diffraction efficiency upper bound of diffractive phase elements,” Opt. Lett. 25, 1288 (2000). 26. G. Zhou, X. Yuan, P. Dowd, Y.-L. Lam, and Y.-C. Chan, “Design of diffractive phase elements for beam shaping: hybrid approach,” Opt. Soc. Am. A 18, 791 (2001). 27. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1987). 28. J. R. Shewchuk, “An introduction to the conjugate gradient method without the agonizing pain,” (1994). http://www.cs.cmu.edu/ ̃quake-papers/painless-conjugate-gradient.pdf. 29. M. Johansson and J. Bengtsson, “Robust design method for highly efficient beam-shaping diffractive optical elements using an iterative-fourier-transform algorithm with soft operations,” Journal of Modern Optics 47, 1385– 1398 (2000). 30. A. Bartok-Partay, S. Cereda, G. Csanyi, J. Kermode, I. Solt, W. Szlachta, C. Varnai, and S. Winfield. http://www.libatoms.org. 31. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex stagnation problem in iterative Fourier transform algorithms,” Opt. Laser Eng. 43, 43–56 (2005).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.

Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a...

متن کامل

Robust Digital Holography For Ultracold Atom Trapping

We have formulated and experimentally demonstrated an improved algorithm for design of arbitrary two-dimensional holographic traps for ultracold atoms. Our method builds on the best previously available algorithm, MRAF, and improves on it in two ways. First, it allows for creation of holographic atom traps with a well defined background potential. Second, we experimentally show that for creatin...

متن کامل

Fabrication of micro-magnetic traps for cold neutral atoms

Many proposals for quantum information processing require precise control over the motion of neutral atoms, as in the manipulation of coherent matter waves or the confinement and localization of individual atoms. Patterns of micron-sized wires, fabricated lithographically on a flat substrate, can conveniently produce large magnetic-field gradients and curvatures to trap cold atoms and to facili...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Optimum Shape Design of a Radiant Oven by the Conjugate Gradient Method and a Grid Regularization Approach

This study presents an optimization problem for shape design of a 2-D radiant enclosure with transparent medium and gray-diffuse surfaces. The aim of the design problem is to find the optimum geometry of a radiant enclosure from the knowledge of temperature and heat flux over some parts of boundary surface, namely the design surface. The solution of radiative heat transfer is based on the net r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014