Differentiation of the Cholesky decomposition

نویسنده

  • Iain Murray
چکیده

We review strategies for differentiating matrix-based computations, and derive symbolic and algorithmic update rules for differentiating expressions containing the Cholesky decomposition. We recommend new ‘blocked’ algorithms, based on differentiating the Cholesky algorithm DPOTRF in the LAPACK library, which uses ‘Level 3’ matrix-matrix operations from BLAS, and so is cache-friendly and easy to parallelize. For large matrices, the resulting algorithms are the fastest way to compute Cholesky derivatives, and are an order of magnitude faster than the algorithms in common usage. In some computing environments, symbolically-derived updates are faster for small matrices than those based on differentiating Cholesky algorithms. The symbolic and algorithmic approaches can be combined to get the best of both worlds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Quasi-Monte Carlo (QMC) algorithms in blocks decomposition of de-trended

The length of equal minimal and maximal blocks has eected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using Quasi Monte Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in Horest power.

متن کامل

Some Modifications to Calculate Regression Coefficients in Multiple Linear Regression

In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

Singular Values using Cholesky Decomposition

In this paper two ways to compute singular values are presented which use Cholesky decomposition as their basic operation.

متن کامل

A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion

Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.07527  شماره 

صفحات  -

تاریخ انتشار 2016