Position Estimation of Small Robotic Fish Based on Camera Information and Gyro Sensors
نویسندگان
چکیده
Robotic fish are ideal for surveying fish resources and performing underwater structural inspections. If a robot is sufficiently fishlike in appearance and does not use a screw propeller, real fish will not be easily surprised by it. However, it is comparatively difficult for such a robot to determine its own position in water. Radio signals, such as those used by GPS, cannot be easily received. Moreover, sound ranging is impractical because of the presence of rocks and waterweed in places where fish spend a lot of time. For practical applications such as photographing fish, a robotic fish needs to follow the target fish without losing awareness of its own position, in order to be able to swim autonomously. We have developed a robotic fish named FOCUS (FPGA Offline Control Underwater Searcher) which is equipped with two CMOS cameras and a field-programmable gate array (FPGA) circuit board for data processing. The forward-facing camera is used to track red objects, since this is the color of the fish of interest. In addition, using visual information obtained with the bottom-facing camera, the robot can estimate its present position. This is achieved by performing real-time digital image correlation using the FPGA. However, until now, the position estimation accuracy has been poor due to the influence of yaw and roll. In the present study, the position estimation method has been greatly improved by taking into account the yaw and roll values measured using gyro sensors.
منابع مشابه
Ball Trajectory Estimation and Robot Control to Reach the Ball Using Single Camera
In robotics research, catching a projectile object with a robotic system is one of the challenging problems. The outcome of these researches can be used in a wide range of applications such as video surveillance systems, analysis of sports videos, monitoring programs for human activities, and human-machine interactions. In this paper, we propose a new vision-based algorithm to estimate the traj...
متن کاملPose estimation using line-based dynamic vision and inertial sensors
In this paper, an observer problem from a computer vision application is studied. Rigid body pose estimation using inertial sensors and a monocular camera is considered and it is shown how rotation estimation can be decoupled from position estimation. Orientation estimation is formulated as an observer problem with implicit output where the states evolve on (3). A careful observability study re...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملEstimating Camera Position and Posture by Using Feature Landmark Database
Estimating camera position and posture can be applied to the fields of augmented reality and robot navigation. In these fields, to obtain absolute position and posture of the camera, sensor-based methods using GPS and magnetic sensors and vision-based methods using input images from the camera have been investigated. However, sensor-based methods are difficult to synchronize the camera and sens...
متن کاملCircumventing Dynamic Modeling: Evaluation of the Error-State Kalman Filter Applied to Mobile Robot Localization
The mobile robot localization problem is treated as a two-stage iterative estimation process. The attitude is estimated rst and is then available for position estimation. The indirect (error state) form of the Kalman lter is developed for attitude estimation when applying gyro modeling. The main bene t of this choice is that complex dynamic modeling of the mobile robot and its interaction with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics
دوره 3 شماره
صفحات -
تاریخ انتشار 2014