Guiding fields for phase separation: controlling Liesegang patterns.

نویسندگان

  • T Antal
  • I Bena
  • M Droz
  • K Martens
  • Z Rácz
چکیده

Liesegang patterns emerge from precipitation processes and may be used to build bulk structures at submicrometer length scales. Thus they have significant potential for technological applications provided adequate methods of control can be devised. Here we describe a simple, physically realizable pattern control based on the notion of driven precipitation, meaning that the phase separation is governed by a guiding field such as, for example, a temperature or pH field. The phase separation is modeled through a nonautonomous Cahn-Hilliard equation whose spinodal is determined by the evolving guiding field. Control over the dynamics of the spinodal gives control over the velocity of the instability front that separates the stable and unstable regions of the system. Since the wavelength of the pattern is largely determined by this velocity, the distance between successive precipitation bands becomes controllable. We demonstrate the above ideas by numerical studies of a one-dimensional system with a diffusive guiding field. We find that the results can be accurately described by employing a linear stability analysis (pulled-front theory) for determining the velocity-local-wavelength relationship. From the perspective of the Liesegang theory, our results indicate that the so-called revert patterns may be naturally generated by diffusive guiding fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling and engineering precipitation patterns.

Controlling and engineering chemical structures are the most important scientific challenges in material science. Precipitation patterns from ions or nanoparticles are promising candidates for designing bulk structure for catalysis, energy production, storage, and electronics. There are only a few procedures and techniques to control precipitation (Liesegang) patterns in gel media (e.g., using ...

متن کامل

Models of Liesegang pattern formation

In this article different mathematical models of the Liesegang phenomenon are exhibited. The main principles of modeling are discussed such as supersaturation theory, sol coagulation and phase separation, which describe the phenomenon using different steps and mechanism beyond the simple reaction scheme. We discuss whether the underlying numerical simulations are able to reproduce several empir...

متن کامل

Self-Fields Effects on Gain in a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and Axial Magnetic Field

In this paper, we have investigated the effects of self-fields on gain in a helical wiggler free electron laser with axial magnetic field and ion-channel guiding. The self-electric and self-magnetic fields of a relativistic electron beam passing through a helical wiggler are analyzed. The electron trajectories and the small signal gain are derived. Numerical investigation is shown that for grou...

متن کامل

Controlling Common-Mode Voltages in Multilevel Inverters

This paper proposes a novel method based on pulse width modulation techniques toreduce and control the common-mode voltage in three-phase multilevel inverters. Besides controllingthe common-mode voltage, this method is capable of controlling capacitors voltages and load currentswith low switching losses and harmonic contents. In fact, due to the existence of different pulsepatterns and the poss...

متن کامل

Dynamic domain formation in membranes: thickness-modulation-induced phase separation.

A simple model investigates the amplification of fluctuations on membranes constituted of two lipids having different lengths. Van der Waals and electrostatic interactions across the lipid bilayer result in a destabilization favoring thickness variations of the membrane. Close to spontaneous demixing of the two components, the additional gain in free energy due to thickness undulations shifts t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007