Characteristics and quality assurance of a dedicated open 0.23 T MRI for radiation therapy simulation.

نویسندگان

  • Dennis Mah
  • Michael Steckner
  • Elizabeth Palacio
  • Raj Mitra
  • Theresa Richardson
  • Gerald E Hanks
چکیده

A commercially available open MRI unit is under routine use for radiation therapy simulation. The effects of a gradient distortion correction (GDC) program used to post process the images were assessed by comparison with the known geometry of a phantom. The GDC reduced the magnitude of the distortions at the periphery of the axial images from 12 mm to 2 mm horizontally along the central axis and distortions exceeding 20 mm were reduced to as little as 2 mm at the image periphery. Coronal and sagittal scans produced similar results. Coalescing these data into distortion as a function of radial distance, we found that for radial distances of <10 cm, the distortion after GDC was <2 mm and for radial distances up to 20 cm, the distortion was <5 mm. The dosimetric errors resulting from homogeneous dose calculations with this level of distortion of the external contour is <2%. A set of triangulation lasers has been added to establish a virtual isocenter for convenient setup and marking of patients and phantoms. Repeated measurements of geometric phantoms over several months showed variations in position between the virtual isocenter and the magnetic isocenter were constrained to <2 mm. Additionally, the interscan variations of 12 randomly selected points in space defined by a rectangular grid phantom was found to be within the intraobserver error of approximately 1 mm in the coronal, sagittal, and transverse planes. Thus, the open MRI has sufficient geometric accuracy for most radiation therapy planning and is temporally stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality Assurance of LINAC by Analyzing the Profile of 6-MV and 10-MV Photon Beams Using Star Track Device

Introduction: According to the American Society of Radiation Oncology, all patients receive radiation therapy during their illness, where radiation is delivered by the medical linear accelerator (Linac). The aim of this study was to evaluate the quality assurance (QA) of the Linac in analyzing the used dose profile in the treatment of cancer tumors. Materi...

متن کامل

A Specific Patient Quality Assurance (PSQA) procedure for a Co-60 source based High Dose Rate Brachytherapy

Introduction: In radiation therapy, accurate dose determination and precise dose delivery to the tumor are directly associated with better treatment outcomes in terms of higher tumor control and lower post radiation therapy complications. The current study aims the development and clinical application of the Patient Specific Quality Assurance (PSQA) procedures for nasopharyngea...

متن کامل

Dosimetric pitfalls in the application of shielding disk in breast intraoperative electron radiation therapy

Introduction: Intraoperative electron radiotherapy (IOERT) is an IORT technique in which electron beams with different nominal energies are used for irradiation of microscopic residual of tumor bed after surgery. Application of a shielding disk, which is positioned under the target volume, for protecting the normal tissues such as pectoral muscle, lung, and heart is one of the a...

متن کامل

Comprehensive RT-Specific QA for MRI Simulation

MRI simulation is the process of acquiring high fidelity, high contrast resolution magnetic resonance images to identify true disease extent and proximity relative to adjacent organs at risk (OAR) for the purposes of radiation treatment planning. MRI simulation can be performed using dedicated MRI scanners in radiotherapy departments [1] or using MRI scanners sited in other departments as share...

متن کامل

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 29 11  شماره 

صفحات  -

تاریخ انتشار 2002