Multigroup diffusion preconditioners for multiplying fixed-source transport problems

نویسندگان

  • Jeremy A. Roberts
  • Benoit Forget
چکیده

Several preconditioners based on multigroup diffusion are developed for application to multiplying fixed-source transport problems using the discrete ordinates method. By starting from standard, one-group, diffusion synthetic acceleration (DSA), a multigroup diffusion preconditioner is constructed that shares the same fine mesh as the transport problem. As a cheaper but effective alternative, a two-grid, coarse-mesh, multigroup diffusion preconditioner is examined, for which a variety of homogenization schemes are studied to generate the coarse mesh operator. Finally, a transport-corrected diffusion preconditioner based on application of the Newton-Shulz algorithm is developed. The results of several numerical studies indicate the coarsemesh, diffusion preconditioners work very well. In particular, a coarse-mesh, transport-corrected, diffusion preconditioner reduced the computational time of multigroup GMRES by up to a factor of 17 and outperformed best-case Gauss-Seidel results by over an order of magnitude for all problems studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Diffusion Acceleration for the Multigroup Transport Equation Discretized with SN and Continuous FEM with Rattlesnake

Nonlinear diffusion acceleration (NDA) can improve the performance of a neutron transport solver significantly especially for the multigroup eigenvalue problems. The high-order transport equation and the transport-corrected low-order diffusion equation form a nonlinear system in NDA, which can be solved via a Picard iteration. The consistency of the correction of the low-order equation is impor...

متن کامل

Multilevel NDA Methods for Solving Multigroup Eigenvalue Neutron Transport Problems

The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in one-dimensional slab geometry. The proposed method is defined by a multilevel system of equations that includes multigroup and effective onegr...

متن کامل

A Comparison of Algorithms for the Efficient Solution of the Linear Systems Arising from Multigroup Flux-limited Diffusion Problems

Flux-limited diffusion has become a popular method for treating radiation transport in multidimensional astrophysical simulation codes with multi-group flux-limited diffusion (MGFLD) undergoing increasing use in a number of applications. The most computationally demanding aspect of this technique is the solution of the large linear systems that arise from the implicit finite-difference scheme t...

متن کامل

The FN Method for Multigroup Transport Theory with Upscattering

An integral transform technique and the FN method are used to develop solutions to a class of multigroup radiation-transport problems. The multigroup model considered allows an anisotropic scattering law and transfer from any group to any group. Computational aspects of the developed solution are discussed, and especially accurate numerical results are reported for two test cases.

متن کامل

A Nodal Expansion Method for Solving the Multigroup Sp3 Equations in the Reactor Code Dyn3d

The core model DYN3D which has been developed for three-dimensional analyses of steady states and transients in thermal reactors with quadratic or hexagonal fuel assemblies is based on nodal methods for the solution of the two-group neutron diffusion equation. Loading cores with higher content of MOX fuel, the increase of the fuel cycle length and new types of reactors are challenging for these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 274  شماره 

صفحات  -

تاریخ انتشار 2014