Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression.

نویسندگان

  • Cheol Seong Jang
  • Terry L Kamps
  • D Neil Skinner
  • Stefan R Schulze
  • William K Vencill
  • Andrew H Paterson
چکیده

Rhizomes are organs of fundamental importance to plant competitiveness and invasiveness. We have identified genes expressed at substantially higher levels in rhizomes than other plant parts, and explored their functional categorization, genomic organization, regulatory motifs, and association with quantitative trait loci (QTLs) conferring rhizomatousness. The finding that genes with rhizome-enriched expression are distributed across a wide range of functional categories suggests some degree of specialization of individual members of many gene families in rhizomatous plants. A disproportionate share of genes with rhizome-enriched expression was implicated in secondary and hormone metabolism, and abiotic stimuli and development. A high frequency of unknown-function genes reflects our still limited knowledge of this plant organ. A putative oligosaccharyl transferase showed the highest degree of rhizome-specific expression, with several transcriptional or regulatory protein complex factors also showing high (but lesser) degrees of specificity. Inferred by the upstream sequences of their putative rice (Oryza sativa) homologs, sorghum (Sorghum bicolor) genes that were relatively highly expressed in rhizome tip tissues were enriched for cis-element motifs, including the pyrimidine box, TATCCA box, and CAREs box, implicating the gibberellins in regulation of many rhizome-specific genes. From cDNA clones showing rhizome-enriched expression, expressed sequence tags forming 455 contigs were plotted on the rice genome and aligned to QTL likelihood intervals for ratooning and rhizomatous traits in rice and sorghum. Highly expressed rhizome genes were somewhat enriched in QTL likelihood intervals for rhizomatousness or ratooning, with specific candidates including some of the most rhizome-specific genes. Some rhizomatousness and ratooning QTLs were shown to be potentially related to one another as a result of ancient duplication, suggesting long-term functional conservation of the underlying genes. Insight into genes and pathways that influence rhizome growth set the stage for genetic and/or exogenous manipulation of rhizomatousness, and for further dissection of the molecular evolution of rhizomatousness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array

Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping sys...

متن کامل

Population Variation and Genetic Control of Modular Chromatin Architecture in Humans

Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory ele...

متن کامل

Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci

Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis-acting associations due to study limitations. While trans-...

متن کامل

Expression quantitative trait Loci acting across multiple tissues are enriched in inherited risk for coronary artery disease.

BACKGROUND Despite recent discoveries of new genetic risk factors, the majority of risk for coronary artery disease (CAD) remains elusive. As the most proximal sensor of DNA variation, RNA abundance can help identify subpopulations of genetic variants active in and across tissues mediating CAD risk through gene expression. METHODS AND RESULTS By generating new genomic data on DNA and RNA samp...

متن کامل

Gene age predicts the strength of purifying selection acting on gene expression variation in humans.

Gene expression levels can be subject to selection. We hypothesized that the age of gene origin is associated with expression constraints, given that it affects the level of gene integration into the functional cellular environment. By studying the genetic variation affecting gene expression levels (cis expression quantitative trait loci [cis-eQTLs]) and protein levels (cis protein QTLs [cis-pQ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 3  شماره 

صفحات  -

تاریخ انتشار 2006