Coupled Thermodynamic And CFD Approaches Applied To A Supersonic Air Ejector
نویسندگان
چکیده
This paper presents a systematic comparison of ejector performance predictions between a thermodynamic model and a Computational Fluid Dynamics (CFD) model for different operating conditions. The thermodynamic model developed by Galanis and Sorin (2016) assumes the primary flow is always choked, and irreversibilities due to viscous dissipation are taken into account through polytropic efficiencies. The CFD model developed by Croquer et al., (2016a) on a commercial software has already been validated for supersonic ejectors working with R134a, taking a standard high Reynolds number k-ω SST turbulence model coupled with the perfect gas law. The dimensions of the ejector were first determined by the thermodynamic model and then used in the CFD model. The thermodynamic model predicts higher entrainment ratios for double choking operation and somewhat different values of the critical and limiting pressure ratios. The CFD model validates the similarity solutions characteristic of ejectors using perfect gases. The present results show in particular that identical inlet pressure and temperature ratios induce the same entrainment ratio as well as the same critical and limiting pressure ratios. Both models confirm also that similar diameter ratios between the primary nozzle throat and the constant area section lead to the same values of the entrainment ratio. Thus, for double-choking operations, the entrainment ratio depends on the inlet pressure and temperature ratios rather than on the individual values of these four properties as it is the case for ejectors with real fluids. It also shows that the position of the shock varies linearly with the compression ratio in qualitative agreement with the assumption used in the thermodynamic model.
منابع مشابه
Verification of K-ω SST Turbulence Model for Supersonic Internal Flows
In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in fiel...
متن کاملEjector Solar Cooling
In recent times, there has been a rise in popularity of comfort cooling systems, mainly based on electrically driven heat pumps. The accompanying peak loading on electricity grids is proving to be particularly problematic and expensive for electricity utilities, notwithstanding the greenhouse gas emissions associated with the electricity consumption of these het pumps. An alternative is to gene...
متن کاملParticle Image Velocimetry in a Supersonic Air Ejector
Ejectors are devices usually made of two convergent-divergent coaxial nozzles which are used to convert pressure energy into kinetic energy. These devices involve very complex phenomena which strongly affect their performance. Flow visualization methods are often used to provide precious information as for the nature of the flow within the ejectors and the comprehension of the physical phenomen...
متن کاملThermodynamic Modelling of Supersonic Gas Ejector with Droplets
This study presents a thermodynamic model for determining the entrainment ratio and double choke limiting pressure of supersonic ejectors within the context of heat driven refrigeration cycles, with and without droplet injection, at the constant area section of the device. Input data include the inlet operating conditions and key geometry parameters (primary throat, mixing section and diffuser ...
متن کاملThermodynamic Analysis of a Trigeneration System Based-on an Internal combustion Engine with a Steam Ejector Refrigeration System
This paper aims at studying a trigeneration system, based on an internal combustion engine and a steam ejector refrigeration system. The designed cycle is to generate cooling and heating energies, and supply power simultaneously. The cycle is studied from thermodynamics point of view and for this purpose, the first law of thermodynamics is applied to all components of the cycle. The efficiency ...
متن کامل