Transient influence of end-tidal carbon dioxide tension on the postural restraint in cerebral perfusion.

نویسندگان

  • Rogier V Immink
  • Jasper Truijen
  • Niels H Secher
  • Johannes J Van Lieshout
چکیده

In the upright position, cerebral blood flow is reduced, maybe because arterial carbon dioxide partial pressure (Pa(CO(2))) decreases. We evaluated the time-dependent influence of a reduction in Pa(CO(2)), as indicated by the end-tidal Pco(2) tension (Pet(CO(2))), on cerebral perfusion during head-up tilt. Mean arterial pressure, cardiac output, middle cerebral artery mean flow velocity (MCA V(mean)), and dynamic cerebral autoregulation at supine rest and 70 degrees head-up tilt were determined during free breathing and with Pet(CO(2)) clamped to the supine level. The postural changes in central hemodynamic variables were equivalent, and the cerebrovascular autoregulatory capacity was not significantly affected by tilt or by clamping Pet(CO(2)). In the first minute of tilt, the decline in MCA V(mean) (10 +/- 4 vs. 3 +/- 4 cm/s; mean +/- SE; P < 0.05) and Pet(CO(2)) (6.8 +/- 4.3 vs. 1.7 +/- 1.6 Torr; P < 0.05) was larger during spontaneous breathing than during isocapnic tilt. However, after 2 min in the head-up position, the reduction in MCA V(mean) was similar (7 +/- 5 vs. 6 +/- 3 cm/s), although the spontaneous decline in Pet(CO(2)) was maintained (P < 0.05 vs. isocapnic tilt). These results suggest that the potential contribution of Pa(CO(2)) to the postural reduction in MCA V(mean) is transient, leaving the mechanisms for the sustained restrain in MCA V(mean) to be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebral Oxygen Saturation: Graded Response to Carbon Dioxide with Isoxia and Graded Response to Oxygen with Isocapnia

BACKGROUND Monitoring cerebral saturation is increasingly seen as an aid to management of patients in the operating room and in neurocritical care. How best to manipulate cerebral saturation is not fully known. We examined cerebral saturation with graded changes in carbon dioxide tension while isoxic and with graded changes in oxygen tension while isocapnic. METHODOLOGY/PRINCIPAL FINDINGS The...

متن کامل

End-tidal Carbon Dioxide Measurements in Unintentional Non-Fire-Related Carbon Monoxide Poisoning

Background: Poisoning with carbon monoxide occurs occasionally worldwide, and the gold diagnostic standard is to measure carboxyhemoglobin level in the blood. This study investigated the correlation between carboxyhemoglobin and the end-tidal carbon dioxide levels in 50 patients with carbon monoxide poisoning. Methods: We recruited 50 volunteer patients who had been admitted to the Emergency S...

متن کامل

Investigating the Relationship Between End Tidal Carbon Dioxide and Arterial Carbon Dioxide Pressure in Patients With Respiratory Distress Referred to the Emergency Room of Hazrat Rasool Akram Hospital

Background: Measuring End-Tidal Carbon Dioxide (ETCO-2) can be a non-invasive, fast, and reliable method to predict partial pressure of carbon dioxide (PaCO2) in patients with respiratory distress. This method, which can be a suitable substitute to measure PaCO2, is being used in many emergency rooms and operating rooms in developed countries, but its exact relationship with PaCO2 has not been ...

متن کامل

Difference in the value of arterial and end-tidal carbon dioxide tension according to different surgical positions: Does it reliably reflect ventilation-perfusion mismatch?

BACKGROUND Body posture, as a gravitational factor, has a clear impact on pulmonary ventilation and perfusion. In lung units with mismatched ventilation and perfusion, gas exchange and/or elimination of carbon dioxide can be impaired. In this situation, differences in the value of arterial and end-tidal carbon dioxide tension [Δ(PaCO(2) - P(ET)CO(2))] are expected to increase. This study was co...

متن کامل

Hyperventilation, cerebral perfusion, and syncope.

This review summarizes evidence in humans for an association between hyperventilation (HV)-induced hypocapnia and a reduction in cerebral perfusion leading to syncope defined as transient loss of consciousness (TLOC). The cerebral vasculature is sensitive to changes in both the arterial carbon dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 107 3  شماره 

صفحات  -

تاریخ انتشار 2009