High-Speed Polynomial Basis Multipliers Over for Special Pentanomials

نویسنده

  • José L. Imaña
چکیده

Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Parallel Multipliers Based on Special Irreducible Pentanomials

The state-of-the-art Galois field GF ð2Þ multipliers offer advantageous space and time complexities when the field is generated by some special irreducible polynomial. To date, the best complexity results have been obtained when the irreducible polynomial is either a trinomial or an equally spaced polynomial (ESP). Unfortunately, there exist only a few irreducible ESPs in the range of interest ...

متن کامل

Efficient Square-based Montgomery Multiplier for All Type C.1 Pentanomials

In this paper, we present a low complexity bit-parallel Montgomery multiplier for GF(2m) generated with a special class of irreducible pentanomials xm + xm−1 + xk + x + 1. Based on a combination of generalized polynomial basis (GPB) squarer and a newly proposed square-based divide and conquer approach, we can partition field multiplications into a composition of sub-polynomial multiplications a...

متن کامل

Toeplitz matrix-vector product based GF(2n) shifted polynomial basis multipliers for all irreducible pentanomials

Besides Karatsuba algorithm, optimal Toeplitz matrix-vector product (TMVP) formulae is another approach to design GF (2) subquadratic multipliers. However, when GF (2) elements are represented using a shifted polynomial basis, this approach is currently appliable only to GF (2)s generated by all irreducible trinomials and a special type of irreducible pentanomials, not all general irreducible p...

متن کامل

Low-Latency Digit-Serial Systolic Double Basis Multiplier over $\mbi GF{(2^m})$ Using Subquadratic Toeplitz Matrix-Vector Product Approach

Recently, the multipliers with subquadratic space complexity for trinomials and some specific pentanomials have been proposed. For such kind of multipliers, alternatively, we use double basis multiplication which combines the polynomial basis and the modified polynomial basis to develop a new efficient digit-serial systolic multiplier. The proposed multiplier depends on trinomials and almost eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015