AVERAGE MAHLER’S MEASURE AND Lp NORMS OF LITTLEWOOD POLYNOMIALS

نویسنده

  • STEPHEN CHOI
چکیده

Littlewood polynomials are polynomials with each of their coefficients in the set {−1, 1}. We compute asymptotic formulas for the arithmetic mean values of the Mahler’s measure and the Lp norms of Littlewood polynomials of degree n − 1. We show that the arithmetic means of the Mahler’s measure and the Lp norms of Littlewood polynomials of degree n − 1 are asymptotically e−γ/2 √ n and Γ(1+ p/2)1/p √ n, respectively, as n grows large. Here γ is Euler’s constant. We also compute asymptotic formulas for the power means Mα of the Lp norms of Littlewood polynomials of degree n− 1 for any p > 0 and α > 0. We are able to compute asymptotic formulas for the geometric means of the Mahler’s measure of the “truncated” Littlewood polynomials f̂ defined by f̂(z) := min{|f(z)|, 1/n} associated with Littlewood polynomials f of degree n − 1. These “truncated” Littlewood polynomials have the same limiting distribution functions as the Littlewood polynomials. Analogous results for the unimodular polynomials, i.e., with complex coefficients of modulus 1, were proved before. Our results for Littlewood polynomials were expected for a long time but looked beyond reach, as a result of Fielding known for means of unimodular polynomials was not available for means of Littlewood polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AVERAGE MAHLER’S MEASURE AND Lp NORMS OF UNIMODULAR POLYNOMIALS

A polynomial f ∈ C[z] is unimodular if all its coefficients have unit modulus. Let Un denote the set of unimodular polynomials of degree n−1, and let Un denote the subset of reciprocal unimodular polynomials, which have the property that f(z) = ωzn−1f(1/z) for some complex number ω with |ω| = 1. We study the geometric and arithmetic mean values of both the normalized Mahler’s measure M(f)/ √ n ...

متن کامل

Lp-Norms and Information Entropies of Charlier Polynomials

We derive asymptotics for the Lp-norms and information entropies of Charlier polynomials. The results differ to some extent from previously studied cases, for example, the Lp-norms show a peculiar behaviour with two tresholds. Some complications arise because the measure involved is discrete.

متن کامل

Server Scheduling to Balance Priorities, Fairness, and Average Quality of Service

Often server systems do not implement the best known algorithms for optimizing average Quality of Service (QoS) out of concern that these algorithms may be insufficiently fair to individual jobs. The standard method for balancing average QoS and fairness is optimize the lp norm, 1 < p < ∞. Thus we consider server scheduling strategies to optimize the lp norms of the standard QoS measures, flow ...

متن کامل

Random Polynomials of High Degree and Levy Concentration of Measure

We show that the Lp norms of random sequences of holomorphic sections sN ∈ H(M, L ) of powers of a positive line bundle L over a compact Kähler manifold M satisfy ‖sN‖p/‖sN‖2 = { O(1) for 2 ≤ p < ∞ O( √ logN) for p = ∞ } almost surely. This estimate also holds for almost-holomorphic sections of positive line bundles on symplectic manifolds (in the sense of our previous work) and we give almost ...

متن کامل

Les fonctions maximales de Hardy–Littlewood pour des mesures sur les variétés cuspidales

Résumé Dans cet article, on étudie les fonctions maximales de Hardy–Littlewood pour une grande famille de mesures sur les variétés cuspidales. En particulier, on étudie une famille de variétés à croissance exponentielle du volume sur lesquelles la fonction maximale centrée de Hardy–Littlewood est de type faible (1,1), et la fonction maximale non-centrée de Hardy–Littlewood est bornée sur Lp pou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014