On Generalized Douglas-Weyl Spaces
نویسندگان
چکیده
In this paper, we show that the class of R-quadratic Finsler spaces is a proper subset of the class of generalized Douglas-Weyl spaces. Then we prove that all generalized Douglas-Weyl spaces with vanishing Landsberg curvature have vanishing the non-Riemannian quantity H, generalizing result previously only known in the case of R-quadratic metric. Also, this yields an extension of well-known Numata’s Theorem.
منابع مشابه
Generalized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملOn Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملλ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملar X iv : m at h / 06 06 47 2 v 1 [ m at h . C T ] 1 9 Ju n 20 06 Generalized 2 - vector spaces and general linear 2 - groups Josep
In this paper a notion of generalized 2-vector space is introduced which includes Kapranov and Voevodsky 2-vector spaces. Various kinds of generalized 2-vector spaces are considered and examples are given. The existence of non free generalized 2-vector spaces and of generalized 2-vector spaces which are non Karoubian (hence, non abelian) categories is discussed, and it is shown how any generali...
متن کامل