Flexibility to contingency changes distinguishes habitual and goal-directed strategies in humans
نویسندگان
چکیده
Decision-making in the real world presents the challenge of requiring flexible yet prompt behavior, a balance that has been characterized in terms of a trade-off between a slower, prospective goal-directed model-based (MB) strategy and a fast, retrospective habitual model-free (MF) strategy. Theory predicts that flexibility to changes in both reward values and transition contingencies can determine the relative influence of the two systems in reinforcement learning, but few studies have manipulated the latter. Therefore, we developed a novel two-level contingency change task in which transition contingencies between states change every few trials; MB and MF control predict different responses following these contingency changes, allowing their relative influence to be inferred. Additionally, we manipulated the rate of contingency changes in order to determine whether contingency change volatility would play a role in shifting subjects between a MB and MF strategy. We found that human subjects employed a hybrid MB/MF strategy on the task, corroborating the parallel contribution of MB and MF systems in reinforcement learning. Further, subjects did not remain at one level of MB/MF behaviour but rather displayed a shift towards more MB behavior over the first two blocks that was not attributable to the rate of contingency changes but rather to the extent of training. We demonstrate that flexibility to contingency changes can distinguish MB and MF strategies, with human subjects utilizing a hybrid strategy that shifts towards more MB behavior over blocks, consequently corresponding to a higher payoff.
منابع مشابه
Habitual Behavior Is Mediated by a Shift in Response-Outcome Encoding by Infralimbic Cortex
The ability to flexibly switch between goal-directed actions and habits is critical for adaptive behavior. The infralimbic prefrontal cortex (IfL-C) has been consistently identified as a crucial structure for the regulation of response strategies. To investigate the role of the IfL-C, the present study employed two validated reinforcement schedules that either promote habits or goal-directed ac...
متن کاملDifferential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans.
According to dual-system accounts, instrumental learning is supported by both a goal-directed and a habitual system. Although behavioral control by the goal-directed system, through outcome-action associations, dominates with moderate training, stimulus-response associations are thought to form concurrently in the habit system. It is therefore challenging to isolate the neural substrate of the ...
متن کاملModeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest th...
متن کاملOrbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions
Shifting between goal-directed and habitual actions allows for efficient and flexible decision making. Here we demonstrate a novel, within-subject instrumental lever-pressing paradigm, in which mice shift between goal-directed and habitual actions. We identify a role for orbitofrontal cortex (OFC) in actions following outcome revaluation, and confirm that dorsal medial (DMS) and lateral striatu...
متن کاملPremotor cortex is critical for goal-directed actions
Shifting between motor plans is often necessary for adaptive behavior. When faced with changing consequences of one's actions, it is often imperative to switch from automatic actions to deliberative and controlled actions. The pre-supplementary motor area (pre-SMA) in primates, akin to the premotor cortex (M2) in mice, has been implicated in motor learning and planning, and action switching. We...
متن کامل